1. Domenici, P. and Blake, R., The kinematics and performance of fish fast-start swimming, J. Exp. Biol., 200, 1165, 1997.

2. Wardle, C.S., Limit of fish swimming speed, Nature, 255, 725, 1975.

3. Hertz, PE., Huey, R.B., and Nevo, E., Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards, Evolution, 37, 1075, 1983.

4. Miles, D.B., The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards, Evol. Ecol. Res., 6, 63, 2004.

5. Garland, T., Hankins, E., and Huey, R.B., Locomotory capacity and social dominance in male lizards, Funct. Ecol., 4, 243, 1990.

6. Alexander, R.M., Energy-saving mechanisms in walking and running, J. Exp. Biol., 160, 55, 1991.

7. Lutz, G.J. and Rome, L.C., Built for jumping: the design of the frog muscular system, Science, 263, 370, 1994.

8. Roberts, T.J. and Marsh, R.L., Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs, J. Exp. Biol., 206, 2567, 2003.

9. Peters, S.E. and Aulner, D.A., Sexual dimorphism in forelimb muscles of the bullfrog, Rana catesbeiana: a functional analysis of isometric contractile properties, J. Exp. Biol., 203, 3639, 2000.

10. Brown, R.M. and Taylor, D.H., Compensatory escape mode trade-offs between swimming performance and maneuvering behavior through larval ontogeny of the wood frog, Rana sylvatica, Copeia, 1995, 1, 1995.

11. D'Aout, K. and Aerts, P., Kinematics and efficiency of steady swimming in adult axolotls (Ambystoma mexicanum), J. Exp. Biol., 200, 1863, 1997.

12. Goater, C.P., Semlitsch, R.D., and Bernasconi, M.V., Effects of body size and parasite infection on the locomotory performance of juvenile toads, Bufo bufo, Oikos, 66, 129, 1993.

13. Bevier, C.R., Utilization of energy substrates during calling activity in tropical frogs, Beh. Ecol. Sociobiol, 41, 343, 1997.

14. Weinstein, R.B. and Full, R.J., Intermittent locomotion increases endurance in a gecko, Physiol. Biochem. Zool, 72, 732, 1999.

15. Garland, T., Phylogenetic analyses of lizard endurance in relation to body size and body temperature, in Lizard Ecology: Historical and Experimental Perspectives, Vitt, L.J. and Pianka, E.R., Eds., Princeton University Press, Princeton, 1994, p. 237.

16. Garland, T. and Losos, J.B., Ecological morphology of locomotor performance in squamate reptiles, in Ecological Morphology: Integrative Organismal Biology, Wainwright, P.C. and Reilly, S.M., Eds., University of Chicago Press, Chicago, 1994, p. 240.

17. Bauwens, D., Garland, T., Castilla, A.M., and Van Damme, R., Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation, Evolution, 49, 848, 1995.

18. Bonine, K.E., Gleeson, T.T., and Garland, T., Jr., Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata), J. Mor-phol., 250, 265, 2001.

19. Kohlsdorf, T., James, R.S., Carvalho, J.E., Wilson, R.S., Dal Pai-Silva, M., and Navas, C.A., Locomotor performance of closely related Tropidurus species: relationships with physiological parameters and ecological divergence, J. Exp. Biol., 207, 1183, 2004.

20. Donley, J.M., Sepulveda, C.A., Konstantinidis, P, Gemballa, S., and Shadwick, R.E., Convergent evolution in mechanical design of lamnid sharks and tunas, Nature, 429, 61, 2004.

21. Franklin, C.E., Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish, Clin. Exp. Pharmacol. Physiol., 25, 753, 1998.

22. Navas, C.A., Metabolic physiology, locomotor performance, and thermal niche breadth in neotropical anurans, Physiol. Zool., 69, 1481, 1996.

23. Bennett, A.F., Interindividual variability: an underutilized resource, in New Directions in Ecological Physiology, Feder, M.E., Bennett, A.F., Burggren, W., and Huey, R.B., Eds., Cambridge University Press, Cambridge, 1987, p. 147.

24. Pough, H.F. and Andrews, R.M., Individual and sibling-group variation in metabolism of lizards: the aerobic capacity model for the origin of endothermy, Comp. Biochem. Physiol., 79A, 415, 1984.

25. Shaffer, H.B., Austin, C.C., and Huey, R.B., The consequences of metamorphosis on salamander (Ambystoma) locomotor performance, Physiol. Zool., 64, 212, 1991.

26. Watkins, T.B., The effect of metamorphosis on the repeatability of maximal locomotor performance in the Pacific tree frog Hyla regilla, J. Exp. Biol., 200, 2663, 1997.

27. Tsuji, J.S., Huey, R., Berkum, F.V., Garland, T., and Shaw, R.G., Locomotor performance of hatching fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates, Evol. Ecol., 3, 240, 1989.

28. Bennett, A.F. and Lenski, R.E., Experimental evolution and its role in evolutionary physiology, Am. Zool., 39, 346, 1999.

29. Dohm, M.R., Richardson, C.S., and Garland, T., Exercise physiology of wild and random bred laboratory house mice and their reciprocal hybrids, Am. J. Physiol., 36, 1098, 1994.

30. Jayne, B.C., Bennett, A.F., and Lauder, G.V., Muscle recruitment during terrestrial locomotion: how speed and temperature affect fiber type use in a lizard, J. Exp. Biol., 152, 101, 1990.

31. Warner, D.A. and Andrews, R.M., Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards, Biol. J. Linn. Soc., 76, 105, 2002.

32. Van Buskirk, J., Phenotypic lability and the evolution of predator-induced plasticity in tadpoles, Evolution, 56, 361, 2002.

33. Van Buskirk, J. and McCollum, S.A., Influence of tail shape on tadpole swimming performance, J. Exp. Biol., 203, 2149, 2000.

34. Huey, R. and Dunhan, A., Repeatability of locomotor performance in natural populations of the lizard Sceloporus merriami, Evolution, 41, 1116, 1987.

35. Huey, R.B., Dunham, A.E., Overall, K.L., and Newman, R.A., Variation in locomotor performance in demographically known populations of the lizard Sceloporus merriami, Physiol. Zool., 63, 845, 1990.

36. Kolok, A.S., Plaisance, E.P., and Abdelghani, A., Individual variation in the swimming performance of fishes: an overlooked source of variation in toxicity studies, Env. Toxicol. Chem., 17, 282, 1998.

37. Marker, G.M. and Gatten, R.E., Individual variability in sprint performance, lactate production, and enzyme activity in frogs (Rana pipiens), J. Herpetol., 27, 294, 1993.

38. Martinez, M., Guderley, H., Nelson, J.A., Webber, D., and Dutil, J.D., Once a fast cod, always a fast cod: maintenance of performance hierarchies despite changing food availability in cod (Gadus morhua), Physiol. Biochem. Zool., 75, 90, 2002.

39. Navas, C.A., James, R.S., Wakeling, J.M., Kemp, K.M., and Johnston, I.J., An inte-grative study of the temperature dependence of whole animal and muscle performance during jumping and swimming in the frog Rana temporaria, J. Comp. Physiol., 169, 588, 1999.

40. Choi, I.H., Shim, J.H., and Ricklefs, R.E., Morphometric relationships of take-off speed in anuran amphibians, J. Exp. Zool., 299A, 99, 2003.

41. Marsh, R.L., Jumping ability of anuran amphibians, Adv. Vet. Sci. Comp. Med., 38B, 51, 1994.

Wilson, R. S., Franklin, C.E., and James, R.S., Allometric scaling relationships of jumping performance in the striped marsh frog Limnodynastes peronii, J. Exp. Biol., 203, 1937, 2000.

Zug, G.R., Anuran locomotion — structure and function, 2: Jumping performance of semiaquatic, terrestrial, and arboreal frogs, Smith. Cont. Zool., 276, 1, 1978. Altringham, J.D., Morris, T., James, R.S., and Smith, C.I., Scaling effects on muscle function in fast and slow muscle of Xenopus laevis, J. Exp. Biol. Online, 1, 1, 1996. Garland, T., Physiological correlates of locomotory performance in a lizard: an allometric approach, Am. J. Physiol., 247, R806, 1984.

Bennett, A.F., Garland, T., and Else, P., Individual correlation of morphology, muscle mechanics, and locomotion in a salamander, Am. J. Physiol., 256, R1200, 1989. James, R.S., Wilson, R.S., Carvalho, J.E., Kohlsdorf, T., Gomes, F.R., and Navas, C.A., Physiological and morphological basis of individual variation in jumping performance of Hyla multilineata, Comp. Biochem. Physiol., 137A, S87, 2004. Dowdey, T.G. and Brodie, E.D., Antipredator strategies of salamanders: individual and geographical variation in responses of Eurycea bislineata to snakes, Anim. Beh., 38, 707, 1989.

Gomes, F.R., Bevier, C.C., and Navas, C.A., Environmental and physiological factors influence antipredator behavior in Scinax hiemalis (Anura: Hylidae), Copeia, 2002, 994, 2002.

Bourne, G.R., Lekking behavior in the neotropical frog Ololygon rubra, Beh. Ecol. Sociobiol, 31, 173, 1992.

Wells, K.D., The social behaviour of anuran amphibians, Anim. Behav., 25, 666, 1977. Forester, D.C., Lykens, D.V., and Harrison, W.K., The significance of persistent vocalisation by the spring peeper, Pseudacris crucifer (Anura, Hylidae), Behaviour, 108, 197, 1989.

Lance, S.L. and Wells, K.D., Are spring peeper satellite males physiologically inferior to calling males? Copeia, 4, 1162, 1993.

Wells, K.D. and Taigen, T.L., Reproductive behavior and aerobic capacities of male American toads (Bufo americanus): is behavior constrained by physiology? Herpe-tologica, 40, 292, 1984.

Runkle, L.S., Wells, K.D., Robb, C.C., and Lance, S.L., Individual, nightly, and seasonal variation in calling behavior of the gray treefrog, Hyla versicolor: implications for energy expenditure, Beh. Ecol. Sociobiol., 5, 318, 1994. Schwartz, J.J., Ressel, S.J., and Bevier, C.R., Carbohydrate and calling: depletion of muscle glycogen and the chorusing dynamics of the neotropical treefrog Hyla micro-cephala, Beh. Ecol. Sociobiol., 37, 125, 1995.

Wells, K.D., Taigen, T.L., Rusch, S.W., and Robb, C.C., Seasonal and nightly variation in glycogen reserves of calling gray treefrogs (Hyla versicolor), Herpetologica, 5, 359, 1995.

Johnson, T.P, Swoap, S.J., Bennett, A.F., and Josephson, R.K., Body size, muscle power output and limitations on burst locomotor performance in the lizard Dipso-saurus dorsalis, J. Exp. Biol., 174, 199, 1993.

Marsh, R.L., Ontogenesis of contractile properties of skeletal muscle and sprint performance in the lizard Dipsosaurus dorsalis, J. Exp. Biol., 137, 119, 1988. James, R., Cole, N., Davies, M., and Johnston, I.A., Scaling of intrinsic contractile properties and myofibrillar protein composition of fast muscle in the fish Myoxoce-phalus scorpius L, J. Exp. Biol., 201, 901, 1998.

61. Pellegrino, M.A., Canepari, M., Rossi, R., D'Antona, G., Reggiani, C., and Bottinelli, R., Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles, J. Physiol., 546, 677, 2003.

62. Medler, S., Comparative trends in shortening velocity and force production in skeletal muscles, Am. J. Physiol., 283, R368, 2002.

63. James, R. and Johnston, I.A., Scaling of muscle performance during escape responses in the fish Myoxocephalus scorpius L., J. Exp. Biol., 201, 913, 1998.

64. Videler, J.J. and Wardle, C.S., Fish swimming stride by stride: speed limits and endurance, Rev. Fish. Biol. Fisher., 1, 23, 1991.

65. Emerson, S.B., Allometry and jumping in frogs: helping the twain to meet, Evolution, 32, 551, 1978.

66. Domenici, P., The scaling of locomotor performance in predator-prey encounters: from fish to killer whales, Comp. Biochem. Physiol., 131A, 169, 2001.

67. Iriarte-Diaz, J., Differential scaling of locomotor performance in small and large terrestrial mammals, J. Exp. Biol., 205, 2897, 2002.

68. Johnson, D.C., Burt, C.T., Perng, W.C., and Hitzig, B.M., Effects of temperature on muscle pH-i and phosphate metabolites in newts and lungless salamanders, Am. J. Physiol., 265, R1162, 1993.

69. Swoap, S.J., Johnson, T.P, Josephson, R.K., and Bennett, A.B., Temperature, muscle power output and limitations on burst locomotor performance in the lizard Dipso-saurus dorsalis, J. Exp. Biol., 174, 185, 1993.

70. Farley, C.T., Maximum speed and mechanical power output in lizards, J. Exp. Biol., 200, 2189, 1997.

71. Marsh, R.L., Deactivation rate and shortening velocity as determinants of contractile frequency, Am. J. Physiol., 259, R223, 1990.

72. Altringham, J.D. and Johnston, I.A., Scaling effects on muscle function: power output of isolated fish muscle fibres performing oscillatory work, J. Exp. Biol., 151, 1990.

73. Toro, E., Herrel, A., Vanhooydonck, B., and Irschick, D.J., A biomechanical analysis of intra- and interspecific scaling of jumping and morphology in Caribbean Anolis lizards, J. Exp. Biol., 206, 2641, 2003.

74. Vanhooydonck, B., Van Damme, R., and Aerts, P., Variation in speed, gait characteristics and microhabitat use in lacertid lizards, J. Exp. Biol., 205, 1037, 2002.

75. Heizmann, C.W., Berchtold, M.W., and Rowlerson, A.M., Correlation of parvalbumin concentration with relaxation speed in mammalian muscles, Proc. Natl. Acad. Sci. USA, 79, 7243, 1982.

76. Rome, L.C., Some advances in integrative muscle physiology, Comp. Biochem. Physiol., 120B, 51, 1998.

77. Lindstedt, S.L., McGlothlin, T., Percy, E., and Pifer, J., Task-specific design of skeletal muscle: balancing muscle structural composition, Comp. Biochem. Physiol., 120B, 35, 1998.

78. Wilson, J.A., Kronfeld, D.S., Gay, L.S., Williams, J.H., Wilson, T.M., and Lindinger, M.I., Sarcoplasmic reticulum responses to repeated sprints are affected by conditioning of horses, J. Anim. Sci., 76, 3065, 1998.

79. Lutz, G.J. and Lieber, R.L., Myosin isoforms in anuran skeletal muscle: their influence on contractile properties and in vivo muscle function, Microsc. Res. Tech., 50, 443, 2000.

80. Bottinelli, R. and Reggiani, C., Human skeletal muscle fibres: molecular and functional diversity, Prog. Biophys. Mol. Biol., 73, 195, 2000.

81. Pette, D. and Staron, R. S., Myosin isoforms, muscle fiber types, and transitions, Microsc. Res. Tech., 50, 500, 2000.

82. Lieber, R.L. and Friden, J., Functional and clinical significance of skeletal muscle architecture, Muscle Nerve, 23, 1647, 2000.

83. Emerson, S.B., Jumping and leaping, in Functional Vertebrate Morphology, Hildebrand, M., Bramble, D., Liem, K., and Wake, D., Eds., Harvard University Press, Cambridge, 1985, p. 58.

84. Toro, E., Herrel, A., and Irschick, D., The evolution of jumping performance in Caribbean Anolis lizards: solutions to biomechanical trade-offs, Am. Nat., 163, 844, 2004.

85. Navas, C.A., Antoniazzi, M.M., Carvalho, J.E., Chaui-Berlink, J.G., James, R.S., Jared, C., Kohlsdorf, T., Pai-Silva, M.D., and Wilson, R.S., Morphological and physiological specialization for digging in amphisbaenians, an ancient lineage of fossorial vertebrates, J. Exp. Biol., 207, 2433, 2004.

86. Dickinson, M., Farley, C., Full, R., Koehl, M., Kram, R., and Lehman, S., How animals move: an integrative review, Science, 288, 100, 2000.

87. Kernell, D., Hensbergen, E., Lind, A., and Eerbeek, O., Relation between fibre composition and daily duration of spontaneous activity in ankle muscles of the cat, Arch. Ital. Biol., 136, 191, 1998.

88. Putnam, R.W., Gleeson, T.T., and Bennett, A.F., Histochemical determination of the fiber composition of locomotory muscles in a lizard, Dipsosaurus dorsalis, J. Exp. Zool., 214, 303, 1980.

89. Rome, L.C., The design of the vertebrate muscular systems: comparative and integrative approaches, Clinic. Orthop. Relat. Res., 403S, 58, 2002.

90. Lutz, G.J., Bremner, S., Lajevardi, N., Lieber, R.L., and Rome, L.C., Quantitative analysis of muscle fibre type and myosin heavy chain distribution in the frog hindlimb: implications for locomotory design, J. Muscle. Res. Cell. Motil., 19, 717, 1998.

91. Gerhardt, H.C., The evolution of vocalization in frogs and toads, Ann. Rev. Ecol. Syst., 25, 293, 1994.

92. Marsh, R.L., Contractile properties of muscles used in sound production and locomotion in two species of gray tree frog, J. Exp. Biol., 202, 3215, 1999.

93. Bevier, C., Biochemical correlates of calling activity in neotropical frogs, Physiol. Zool., 68, 1118, 1995.

94. Ressel, S.J., Ultrastructural properties of muscles used for call production in neotropical frogs, Physiol. Zool., 69, 952, 1996.

95. Rubinstein, N.A., Erulkar, S.D., and Schneider, G.T., Sexual dimorphism in the fibers of a "clasp" muscle of Xenopus laevis, Exp. Neurol., 82, 424, 1983.

96. Lee, J.C., Evolution of a secondary sexual dimorphism in the toad, Bufo marinus, Copeia, 2001, 928, 2001.

97. Goldspink, G., Selective gene expression during adaptation of muscle in response to different physiological demands, Comp. Biochem. Physiol., 120, 5, 1998.

98. Van Damme, R. and Vanhooydonck, B., Origins of interspecific variation in lizard sprint capacity, Funct. Ecol., 15, 186, 2001.

99. Vanhooydonck, B., Van Damme, R., and Aerts, P., Speed and stamina trade-off in lacertid lizards, Int. J. Org. Evol., 55, 1040, 2001.

100. Pasi, B.M. and Carrier, D.R., Functional trade-offs in the limb muscles of dogs selected for running vs. fighting, J. Evol. Biol., 16, 324, 2003.

101. Dohm, M.R., Hayes, J.P., and Garland, T., Quantitative genetics of sprint running speed and swimming endurance in laboratory house mice (Mus domesticus), Evolution, 50, 1688, 1996.

102. Garland, T., Jr., Else, PL., Hulbert, A.J., and Tap, P., Effects of endurance training and captivity on activity metabolism of lizards, Am. J. Physiol., 252, R450, 1987.

103. Jayne, B.C. and Bennett, A.F., Selection of locomotor performance capacity in a natural population of garter snakes, Evolution, 44, 1204, 1990.

104. Sorci, G., Swallow, J.G., Garland, T., Jr., and Clobert, J., Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara, Physiol. Zool., 68, 698, 1995.

105. Wilson, R.S., James, R.S., and Van Damme, R., Trade-offs between speed and endurance in the frog Xenopus laevis: a multi-level approach, J. Exp. Biol., 205, 1145, 2002.

106. Van Damme, R., Wilson, R., Vanhooydonck, B., and Aerts, P., Performance constraints in decathlon athletes, Nature, 415, 755, 2002.

107. Wilson, R. S. and James, R. S., Constraints on muscular performance: trade-offs between power output and fatigue resistance, Proc. R. Soc. Lond. B., 271, 222, 2004.

108. Wilson, R.S., James, R.S., Kohlsdorf, T., and Cox, V.M., Interindividual variation of isolated muscle performance and fibre-type composition in the toad Bufo viridus, J. Comp. Physiol., 174B, 453, 2004.

109. Spicer, J.I. and Gaston, K.J., Physiological Diversity and Its Ecological Consequences, Blackwell Science, London, 1999.

110. Gleeson, T.T. and Harrison, J.M., Muscle composition and its relation to sprint running in the lizard Dipsosaurus dorsalis, Am. J. Physiol., 255, R470, 1988.

111. Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., Hoang, A., Gibert, P., and Beerli, P., The strength of phenotypic selection in natural populations, Am. Nat., 157, 245, 2001.

112. Miller, K. and Camilliere, J.J., Physical training improves swimming performance of the African clawed frog, Xenopus laevis, Herpetologica, 37, 1, 1981.

113. Hill, A.V., The dimensions of animals and their muscular dynamics, Science Progress (London), 38, 209, 1950.

114. McMahon, T.A., Using body size to understand the structural design of animals: quadrupedal locomotion, J. Appl. Physiol., 39, 619, 1975.

115. Rome, L.C., Scaling of muscle fibres and locomotion, J. Exp. Biol., 168, 243, 1992.

116. Taylor, C.R., Heglund, N.C., McMahon, T.A., and Looney, T.R., Energetic cost of generating muscular force during running: a comparison of large and small animals, J. Exp. Biol., 86, 9, 1980.

117. Lindstedt, S.L., Hoppeler, H., Bard, K.M., and Thronson, H.A., Estimate of muscle-shortening rate during locomotion, Am. J. Physiol., 248, R699, 1985.

118. Angilletta, M.J., Niewiarowski, P.E., and Navas, C.A., The evolution of thermal physiology in ectotherms, J. Therm. Biol., 27, 249, 2002.

119. Johnston, I.A. and Temple, G.K., Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour, J. Exp. Biol., 205, 2305, 2002.

12 Power Generation during Locomotion in Anolis Lizards: An Ecomorphological Approach

Was this article helpful?

0 0

Post a comment