1. Sprengel, C.K., Discovery of the secret nature in the structure and fertilization of flowers, in Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants, Lloyd, D.G. and Barrett, S.C. H., Eds., Chapman and Hall, New York, 1996, p. 65.

2. Proctor, M., Yeo, P., and Lack, A., The Natural History of Pollination, Timber Press, Portland, Oregon, 1996, p. 479.

3. Darwin, C., On the Various Contrivances by which British and Foreign Orchids Are Fertilized by Insects, Murray, London, 1862.

4. Nilsson, L.A., The evolution of flowers with deep corolla tubes, Nature, 334, 147, 1988.

5. Alexandersson, R. and Johnson, S.D., Pollinator-mediated selection on flower-tube length in a hawkmoth pollinated Gladiolus (Iridaceae), Proc. R. Soc. Lond. B, 269, 631, 2002.

6. Johnson, S.D. and Steiner, K.E., Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae), Evolution, 51, 45, 1997.

7. Schemske, D.W. and Horvitz, C.C., Temporal variation in selection on a floral character, Evolution, 43, 461, 1989.

8. Labandeira, C.C., Insect mouthparts: Ascertaining the paleobiology of insect feeding strategies, Annu. Rev. Ecol. Syst., 28, 153, 1997.

9. Ren, D., Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins, Science, 280, 85, 1998.

10. Ackerman, J.D., Euglossine bees and their nectar hosts, in The Botany and Natural History of Panama, D'Arcy, W.G. and Correa, M.D., Eds., Missouri Botanical Garden, St. Louis, MO, 1985, p. 225.

11. Haber, W.A. and Frankie, G.W., A tropical hawkmoth community: Costa Rican dry forest Sphingidae, Biotropica, 21, 155, 1989.

12. Grove, K.F., Reproductive Biology of Neotropical Wet Forest Understory Plants, University of Iowa, Iowa City, 1985, p. 187.

13. Heinrich, B., Resource partitioning among some eusocial insects: Bumblebees, Ecology, 57, 874, 1976.

14. Ranta, E. and Lundberg, H., Resource partitioning in bumblebees: The significance of differences in proboscis length, Oikos, 35, 298, 1980.

15. Manning, J.C. and Goldblatt, P., The Moegistorhynchus longirostris (Diptera: Nem-estrinidae) pollination guild: long-tubed flowers and a specialized long-proboscid fly pollination system in southern Africa, Plant Syst. Evol., 206, 51, 1997.

16. Borrell, B.J., Long tongues and loose niches: Evolution of euglossine bees and their nectar flowers, Biotropica, 37, 664, 2005.

17. Inouye, D.W., The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees, Oecologia, 45, 197, 1980.

18. Harder, L.D., Flower handling efficiency of bumble bees: Morphological aspects of probing time, Oecologia, 57, 274, 1983.

19. Szucsich, N.U. and Krenn, H.W., Flies and concealed nectar sources: Morphological innovations in the proboscis of Bombyliidae (Diptera), Acta Zool., 83, 183, 2002.

20. Eastham, L.E.S. and Eassa, Y.E.E., The feeding mechanism of the butterfly Pieris brassicae L., Phil. Trans. R. Soc. Lond. B, 239, 1, 1955.

21. Wannenmacher, G. and Wasserthal, L.T., Contribution of the maxillary muscles to proboscis movement in hawkmoths (Lepidoptera: Sphingidae) — An electrophysiological study, J. Insect Physiol., 49, 765, 2003.

Krenn, H.W., Proboscis musculature in the butterfly Vanessa cardui (Nymphalidae, Lepidoptera): Settling the proboscis recoiling controversy, Acta Zool., 81, 259, 2000. Hepburn, H.R., Proboscis extension and recoil in Lepidoptera, J. Insect Physiol., 17, 637, 1971.

Daniel, T.L., Kingsolver, J.G., and Meyhofer, E., Mechanical determinants of nectar-feeding energetics in butterflies: Muscle mechanics, feeding geometry, and functional equivalence, Oecologia, 79, 66, 1989.

Kingsolver, J.G. and Daniel, T.L., Mechanics of food handling by fluid-feeding insects, in Regulatory Mechanisms in Insect Feeding, Chapman, R.F. and, de Boer, G. Eds., Chapman & Hall, New York, 1995, p. 32.

Heyneman, A.J., Optimal sugar concentrations of floral nectars: Dependence on sugar intake efficiency and foraging costs, Oecologia, 60, 198, 1983. Krenn, H.W., Plant, J.D. and, Szucsich, N.U., Mouthparts of flower-visiting insects, Arthropod Struct. Dev., 34, 1, 2005.

Jervis, M., Functional and evolutionary aspects of mouthpart structure in parasitoid wasps, Biol. J. Linn. Soc., 63, 461, 1998.

Amsel, H.G., Amphimoea walkeri Bsd., der Schwärmer mit dem längsten Rüssel! Entomol Rundsch, 55, 165, 1938.

Jervis, M. and, Vilhelmsen, L., Mouthpart evolution in adults of the basal, "sym-phytan," hymenopteran lineages, Biol. J. Linn. Soc., 70, 121, 2000. Borrell, B.J., Suction feeding in orchid bees (Apidae: Euglossini), Proc. R. Soc. Lond. B, 271, S164, 2004.

Krenn, H.W., Mauss, V., and, Plant, J., Evolution of the suctorial proboscis in pollen wasps (Masarinae, Vespidae), Arthropod Struct. Dev., 31, 103, 2002.

Gilbert, F. and Jervis, M., Functional, evolutionary and ecological aspects of feeding-

related mouthpart specializations in parasitoid flies, Biol. J. Linnean Soc., 63, 495,


Gilbert, F.S., Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar and pollen, Ecol. Entomol., 1981, 245, 1981. Szucsich, N.U. and Krenn, H.W., Morphology and function of the proboscis in Bombyliidae (Diptera, Brachycera) and implications for proboscis evolution in Brachycera, Zoomorphology, 120, 79, 2000.

Schremmer, F., Morphologische Anpassungen von Tieren — insbesondere Insekten — an die Gewinnung von Blumennahrung, Verh. Deutschen Zoologischen Ges Saarbrücken, 1961, 375, 1961.

Dierl, W., Zur Nahrungsaufnahme von Corizoneura longirostris (Hardwicke) (Diptera: Tabanidae), Khumbu Himal, 3, 76, 1968.

Handschin, E., Ein neuer Rüsseltyp bei einem Käfer. Biologische und morphologische Beobachtungen an Leptopalpus rostratus F., Z. Morphol. Ökologie Tiere, 14, 513, 1928.

Krenn, H.W. and Kristensen, N.P., Early evolution of the proboscis of Lepidoptera (Insecta): External morphology of the galea in basal glossatan moths lineages, with remarks on the origin of pilifers, Zool. Anz., 239, 179, 2000. Kristensen, N.P., Lepidoptera: Moths and Butterflies 2. Handbook of Zoology IV/36, Walter De Gruyter, New York, 2003.

Smith, J.J. B., Feeding mechanisms, in Comprehensive Insect Physiology, Biochemistry and Pharmacology, Kerkut, G.A. and Gilbert, L.I., Eds., Pergamon Press, New York, 1985, p. 64.

Harder, L.D., Functional differences of the proboscides of short- and long-tongued bees (Hymenoptera, Apoidea), Can. J. Zool., 61, 1580, 1982.

43. Laroca, S., Michener, C.D., and Hofmeister, R.M., Long mouthparts among short-tongued bees and the fine structure of the labium in Niltonia (Hymenoptera, Col-letidae), J. Kans. Entomol. Soc., 62, 400, 1989.

44. Houston, T.F., An extraordinary new bee and adaptation of palpi for nectar-feeding in some Australian Colletidae and Pergidae (Hymenoptera), J. Aust. Entomol. Soc., 22, 263, 1983.

45. Krenn, H.W., Functional morphology and movements of the proboscis of Lepidoptera (Insecta), Zoomorphology, 110, 105, 1990.

46. Krenn, H.W., Proboscis assembly in butterflies (Lepidoptera): A once in a lifetime sequence of events, Eur. J. Entomol., 94, 495, 1997.

47. Snodgrass, R.E., Anatomy of the Honey Bee, Comstock, Ithaca, 1956.

48. Paul, J., Roces, F., and Hölldobler, B., How do ants stick out their tongues? J. Morphol., 254, 39, 2002.

49. Harder, L.D., Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees, Oecologia, 69, 309, 1986.

50. Harder, L.D., Measurement and estimation of functional proboscis length in bumblebees (Hymenoptera: Apidae), Can. J. Zool., 60, 1073, 1982.

51. Paulus, H.F. and Krenn, H.W., Morphologie des Schmetterlingsrüssels und seiner Sensillen — Ein Beitrag zur phylogenetischen Systematik der Papilionoidea (Insecta, Lepidoptera), J. Zool. Syst. Evol. Res., 34, 203, 1996.

52. Krenn, H.W. and Penz, C.M., Mouthparts of Heliconius butterflies (Lepidoptera: Nymphalidae): A search for anatomical adaptations to pollen-feeding behavior, Int. J. Insect Morphol. Embryol, 27, 301, 1998.

53. Krenn, H.W., Zulka, K.P., and Gatschnegg, T., Proboscis morphology and food preferences in nymphalid butterflies (Lepidoptera: Nymphalidae), J. Zool., 254, 17, 2001.

54. Altner, H. and Altner, I., Sensilla with both terminal pore and wall pores on the proboscis of the moth, Rhodogastria Bubo Walker (Lepidoptera, Arctiidae), Zool. Anz., 216, 129, 1986.

55. Krenn, H.W., Proboscis sensilla in Vanessa cardui (Nymphalidae, Lepidoptera): Functional morphology and significance in flower-probing, Zoomorphology, 118, 23, 1998.

56. Walters, B.D., Albert, PJ., and Zacharuk, R.Y., Morphology and ultrastructure of sensilla on the proboscis of the adult spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), Can. J. Zool., 76, 466, 1998.

57. Büttiker, W., Krenn, H.W., and Putterill, J.F., The proboscis of eye-frequenting and piercing Lepidoptera (Insecta), Zoomorphology, 116, 77, 1996.

58. Knopp, M.C.N. and Krenn, H.W., Efficiency of fruit juice feeding in Morpho peleides (Nymphalidae, Lepidoptera), J. Insect Behav., 16, 67, 2003.

59. Elzinga, R.J. and Broce, A.B., Labellar modifications of Muscomorpha flies (Diptera), Ann. Entomol. Soc. Am., 79, 150, 1986.

60. Schuhmacher, H. and Hoffmann, H., Zur Funktion der Mundwerkzeuge von Schwebfliegen bei der Nahrungsaufnahme (Diptera: Syrphidae), Entomol. Gen., 7, 1982.

61. Schiemenz, H., Vergleichende funktionell-anatomische Untersuchungen der Kopfmuskulatur von Theobaldia und Eristalis (Diptera, Culicidae und Syrphidae), Dtsch. Entomol. Z. N.F., 4, 268, 1957.

62. Bonhag, P.F., The skeleto-muscular mechanism of the head and abdomen of the adult horsefly (Diptera: Tabanidae), Trans. Am. Entomol. Soc., 77, 131, 1951.

63. Eberhard, S.H. and Krenn, H.W., Salivary glands and salivary pumps in adult Nymphalidae (Lepidoptera), Zoomorphology, 122, 161, 2003.

64. Krenn, H.W., Artogeia (Pieris) rapae L. (Pier.) — Russelbewegungen und Nahrungsaufnahme. — Film C 1819 des ÖWF, Österreichisches Bundesinstitut für den wissenschaftlichen Film, Wien, 1985.

65. Josens, R.B., Nectar feeding and body size in the ant Camponotus mus, Insectes Soc., 49, 326, 2002.

66. Smith, J.J.B., Effect of diet viscosity on the operation of the pharyngeal pump in the blood-feeding bug Rhodnius prolixus, J. Exp. Biol., 82, 93, 1979.

67. Stephens, D.W. and Krebs, J.R., Foraging Theory, Princeton University Press, Princeton, 1987.

68. Whitham, T.G., Coevolution of foraging in Bombus and nectar dispensing in Chilop-sis: A last dreg theory, Science, 197, 593, 1977.

69. Heinrich, B., Energetics of pollination, Annu. Rev. Ecol. Syst., 6, 139, 1975.

70. Wolf, L.L., Hainsworth, F.R., and Stiles, F.G., Energetics of foraging: rate and efficiency of nectar extraction by hummingbirds, Science, 176, 1351, 1972.

71. Temeles, E.J. and Roberts, M.D., Effect of sexual dimorphism in bill length on foraging behavior: An experimental analysis of hummingbirds, Oecologia, 94, 87, 1993.

72. Temeles, E.J. et al., Evidence for ecological causation of sexual dimorphism in a hummingbird, Science, 289, 441, 2000.

73. Montgomerie, R.D., Eadie, J.M., and Harder, L.D., What do foraging hummingbirds maximize? Oecologia, 63, 357, 1984.

74. Hainsworth, F.R. and Wolf, L.L., Nectar characteristics and food selection by hummingbirds, Oecologia, 25, 101, 1976.

75. Hainsworth, F.R. and Hamill, T., Foraging rules for nectar: food choices by painted ladies, Am. Nat., 142, 857, 1993.

76. Hainsworth, F.R., "Fast food" vs "haute cuisine": painted ladies, Vanessa cardui (L.), select food to maximize net meal energy, Funct. Ecol., 3, 701, 1989.

77. Gass, C.L. and Roberts, M.D., The problem of temporal scale in optimization: Three contrasting views of hummingbird visits to flowers, Am. Nat., 140, 829, 1992.

78. Hainsworth, F.R., Discriminating between foraging rules and why hummingbirds hover, Anim. Behav., 41, 902, 1991.

79. Wasserthal, L.T., Swing-hovering combined with long tongue in hawkmoths, an antipredator adaptation during flower visits, in Animal-Plant Interactions in Tropical Environments, Barthlott, W., Ed., Museum Koenig, Bonn, 1993, p. 77.

80. Plant, J.D. and Paulus, H.F., Comparative morphology of the postmentum of bees (Hymenoptera: Apoidea) with special remarks on the evolution of the lorum, Z. Zool. Syst. Evolutionsforsch. , 25, 81, 1987.

81. Plowright, C.M.S. and Plowright, R.C., The advantage of short tongues in bumblebees (Bombus): Analysis of species distributions according to flower corolla depth, and of working speeds on white clover, Can. Entomol., 129, 51, 1997.

82. Schmitt, J.B., The feeding mechanism of adult Lepidoptera, Smithson. Misc. Coll., 97, 1, 1938.

83. Bänziger, H., Extension and coiling of the lepidopterous proboscis: A new interpretation of the blood-pressure theory, Mitt. Schweiz. Entomol. Gest., 43, 225, 1971.

84. Temeles, E.J. et al., The role of flower width in hummingbird bill length-flower length relationships, Biotropica, 34, 68, 2002.

85. Inoue, T. and Kato, M., Inter- and intraspecific morphological variation in bumblebee species, and competition in flower utilization, in Effects of Resource Distribution on Animal-Plant Interactions, Hunter, M.D., Ohgushi, T., and Price, P.W. Eds., Academic Press, San Diego, 1992, p. 393.

86. Harder, L.D., Morphology as a predictor of flower choice by bumble bees, Ecology, 66, 198, 1985.

87. Janzen, D.H., Euglossine bees as long-distance pollinators of tropical plants, Science, 171, 203, 1971.

88. Betts, A.D., Das Aufnahmevermögen der Bienen beim Zuckerwasserfüttern, Arch. Bienenkunde, 10, 301, 1929.

89. Baker, H.G., Sugar concentrations in nectars from hummingbird flowers, Biotropica, 7, 37, 1975.

90. Kingsolver, J.G. and Daniel, T.L., On the mechanics and energetics of nectar feeding in butterflies, J. Theor. Biol., 76, 167, 1979.

91. Borrell, B.J., Optimality and allometry in nectar foraging of orchid bees (Apidae: Euglossini), Integr. Comp. Biol., 43, 869, 2003.

92. May, P.G., Nectar uptake rates and optimal nectar concentrations of two butterfly species, Oecologia, 66, 381, 1985.

93. Paul, J. and Roces, F., Fluid intake rates in ants correlate with their feeding habits, J. Insect Physiol., 49, 347, 2003.

94. Winter, Y. and von Helversen, O., Operational tongue length in phyllostomid nectar-feeding bats, J. Mammal., 84, 886, 2003.

95. Dethier, V.G., Evans, D.R., and Rhoades, M.V., Some factors controlling the ingestion of carbohydrates by the blowfly, Biol. Bull, 111, 204, 1956.

96. Dethier, V.G. and Rhoades, M.V., Sugar preference-aversion functions for the blowfly, J. Exp. Biol., 126, 177, 1954.

97. Josens, R.B. and Farina, W.M., Nectar feeding by the hovering hawk moth Macro-glossum stellatarum. Intake rate as a function of viscosity and concentration of sucrose solutions, J. Comp. Physiol. A, 187, 661, 2001.

98. Baker, H.G. and Baker, I., A brief historical review of the chemistry of floral nectar, in The Biology of Nectaries, Bentley, B. and Elias, T., Eds., Columbia University Press, New York, 1983, p. 126.

99. Erhardt, A., Preferences and nonpreferences for nectar constituents in Ornithoptera priamus Poseidon (Lepidoptera, Papilionidae), Oecologia, 90, 581, 1992.

100. Wykes, G.R., The preferences of honeybees for solutions of various sugars which occur in nectar, J. Exp. Biol., 29, 511, 1952.

101. Roubik, D.W. and Buchmann, S.L., Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest, Oecologia, 61, 1, 1984.

102. Roubik, D.W. et al., On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae), Apidologie, 26, 197, 1995.

103. Cruden, R.W., Hermann, S.M., and Peterson, S., Patterns of nectar production and plant-pollinator coevolution, in The Biology of Nectaries, Bentley, B. and Elias, T., Eds., Columbia University Press, New York, 1983, p. 80.

104. Frankie, G.W. and Haber, W.A., Why bees move among mass-flowering neotropical trees, in Handbook of Experimental Pollination Biology, Jones, C.E. and Little, R.J., Eds., Scientific and Academic Editions, New York, 1983, p. 360.

105. Koptur, S., Flowering phenology and floral biology of Inga (Fabaceae: Mimosoideae), Syst. Bot, 8, 354, 1983.

106. Schemske, D.W., Floral convergence and pollinator sharing in two bee-pollinated tropical herbs, Ecology, 62, 946, 1981.

107. Varassin, I.G., Trigo, J.R., and Sazima, M., The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloriaceae) in south-eastern Brazil, Bot. J. Linn. Soc., 136, 139, 2001.

108. Carroll, A.B., Pallardy, S.G., and Galen, C., Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae), Am. J. Bot, 88, 438, 2001.

109. Lake, J.C. and Hughes, L., Nectar production and floral characteristics of Tropaeolum majus L. grown in ambient and elevated carbon dioxide, Ann. Bot. (Lond.), 84, 535, 1999.

110. Jakobsen, H.B. and Kristjansson, K., Influence of temperature and floret age on nectar secretion in Trifolium repens L, Ann. Bot. (Lond.), 74, 327, 1994.

111. Corbet, S.A. and Willmer, P.G., The nectar of Justicia and Columnea: composition and concentration in a humid tropical climate, Oecologia, 51, 412, 1981.

112. Mitchell, R.J., Heritability of nectar traits: Why do we know so little? Ecology, 85, 1527, 2004.

113. Real, L.A. and Rathcke, B.J., Patterns of individual variablity in floral resources, Ecology, 69, 728, 1988.

114. Southwick, E.E., Photosynthate allocation to floral nectar: A neglected energy investment, Ecology, 65, 1775, 1984.

115. Mitchell, R.J. and Paton, D.C., Effects of nectar volume and concentration on sugar intake rates of Australian honeyeaters (Meliphagidae), Oecologia, 83, 238, 1990.

116. Perret, M. et al., Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae), Ann. Bot. (Lond.), 87, 267, 2001.

117. Bertsch, A., Foraging in male bumblebees (Bombus lucorum L.): Maximizing energy or minimizing water load? Oecologia, 62, 325, 1984.

118. Roces, F., Winter, Y., and Helverson, O.v., Nectar concentration preferences and water balance in a flower visiting bat, Glossophaga soricina antillarum, in Animal-plant Interactions in Tropical Environments, Barthlott, W., Ed., Museum Koenig, Bonn, 1993, p. 159.

119. Southwick, E.E. and Pimentel, D., Energy efficiency of honey production by bees, Bioscience, 31, 730, 1981.

120. Josens, R.B. and Farina, W.M., Selective choice of sucrose solution concentration by the hovering hawk moth Macroglossum stellatarum, J. Insect Behav., 10, 651, 1997.

121. Kato, M., Roubik, D.W., and Inoue, T., Foraging behavior and concentration preference of male euglossine bees (Apidae: Hymenoptera), Tropics, 1, 259, 1992.

122. Waddington, K.D. and Kirchner, W., Acoustical and behavioral correlates of profitability of food sources in honeybee round dances, Ethology, 92, 1, 1992.

123. Roberts, W.M., Hummingbirds' nectar concentration preferences at low volume: The importance of time scale, Anim. Behav., 52, 361, 1996.

124. Tezze, A.A. and Farina, W.M., Trophallaxis in the honeybee, Apis mellifera: The interaction between viscosity and sucrose concentration of the transferred solution, Anim. Behav., 57, 1319, 1999.

125. Stromberg, M.R. and Johnsen, P.B., Hummingbird sweetness preferences: Taste or viscosity? Condor, 92, 606, 1990.

126. Pivnick, K.A. and McNeil, J.N., Effects of nectar concentration on butterfly feeding: Measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera, Oecologia, 66, 226, 1985.

127. Kevan, P.G., Sun-tracking solar furnaces in High Arctic flowers: Significance for pollination and insects, Science, 189, 723, 1975.

128. Seymour, R.S., White, C.R., and Gibernan, M., Heat reward for insect pollinators, Nature, 426, 243, 2003.

129. Borrell, B.J. and Medeiros, M.J., Thermal stability and muscle efficiency in hovering orchid bees (Apidae: Euglossini), J. Exp. Biol, 207, 2925, 2004.

130. Tamm, S., Importance of energy costs in central place foraging by hummingbirds, Ecology, 70, 195, 1989.

131. Lotz, C.N., del Rio, C.M., and Nicolson, S.W., Hummingbirds pay a high cost for a warm drink, J. Comp. Physiol. B, 173, 455, 2003.

132. Lovell, J.H., The origin of anthophily among the Coleoptera, Psyche, 22, 67, 1915.

133. Roubik, D.W. and Hanson, P.E., Orchid Bees of Tropical America: Biology and Field Guide, Editorial InBio, San José, Costa Rica, 2004, 370.

134. Gess, S.K., The Pollen Wasps: Ecology and Natural History of the Masarinae, Harvard University Press, Cambridge, MA, 1996, p. 340.

135. Gilbert, F.S. et al., Morphological approaches to community structure in hoverflies (Diptera, Syrphidae), Proc. R. Soc. London Series B-Biol. Sci., 224, 115, 1985.

136. Lindberg, A.B. and Olesen, J.M., The fragility of extreme specialization: Passiflora mixta and its pollinating hummingbird Ensifera ensifera, J. Tropical Ecol, 17, 323, 2001.

137. Kristensen, N.P., Studies on the morphology and systematics of primitive Lepidoptera (Insecta), Steenstrupia, 10, 141, 1984.

138. Tamm, S. and Gass, C.L., Energy intake rates and nectar concentration preferences by hummingbirds, Oecologia, 70, 20, 1986.

139. Boggs, C.L., Rates of nectar feeding in butterflies: Effects of sex, size, age and nectar concentration, Funct. Ecol., 2, 289, 1988.

140. Hainsworth, F.R., Precup, E., and Hamill, T., Feeding, energy processing rates and egg-production in painted lady butterflies, J. Exp. Biol., 156, 249, 1991.

141. Stevenson, R.D., Feeding rates of the tobacco hawkmoth Manduca sexta at artificial flowers, Am. Zool., 31, 57A, 1992.

142. Frankie, G.W. et al., Characteristics and organization of the large bee pollination system in the Costa Rican dry forest, in Handbook of Experimental Pollination Biology, Jones, C.E. and Little, R.J., Eds., Scientific and Academic Editions, New York, 1983, p. 411.

143. Real, L.A., Nectar availability and bee-foraging on Ipomoea (Convolvulaceae), Bio-tropica, 13, 64, 1981.

144. Steiner, K.E., The role of nectar and oil in the pollination of Drymonia serrulata (Gesneriaceae) by Epicharis bees (Anthophoridae) in Panama, Biotropica, 17, 217, 1985.

145. SanMartin-Gajardo, I. and Sazima, M., Non-euglossine bees also function as pollinators of Sinningia species (Gesneriaceae) in southeastern Brazil, Plant Biol., 6, 506, 2004.

146. Koptur, S., Floral and extrafloral nectars of Costa Rican Inga trees: A comparison of their constituents and composition, Biotropica, 26, 276, 1994.

147. Knudsen, J.T. and Mori, S.A., Floral scents and pollination in neotropical Lecythi-daceae, Biotropica, 28, 42, 1996.

148. Kennedy, H., Calathea insignis, in Costa Rican Natural History, Janzen, D.H., Ed., University of Chicago Press, Chicago, 1983, 204.

149. Ackerman, J.D. et al., Food-foraging behavior of male Euglossini (Hymenoptera: Apidae): Vagabonds or trapliners? Biotropica, 14, 241, 1982.

150. Kress, W.J., Moran, N., and Weiss, E., Ecological pressures on pollinator selection in Calathea lutea, in OTS Tropical Biology: An Ecological Approach, 1978, 425.

151. Harder, L.D. and Cruzan, M.B., An evaluation of the physiological and evolutionary influences of inflorescence size and flower depth on nectar production, Funct. Ecol, 4, 559, 1990.

152. Tschapka, M., Energy density patterns of nectar resources permit coexistence within a guild of neotropical flower-visiting bats, J. Zool., 263, 7, 2004.

0 0

Post a comment