1. Rowe, N.P. and Speck, T., Hydraulics and mechanics of plants: novelty, innovation and evolution, in The Evolution of Plant Physiology. Poole, I. and Hemsley, A.R., Eds., Elsevier Academic Press, Kew, 2004, chap. 16.

2. Niklas, K.J., The evolution of plant body plans — a biomechanical perspective, Ann. Bot., 85, 411, 2000.

3. Westoby, M. et al., Plant ecological strategies: some leading dimensions of variation between species, Ann. Rev. Ecol. Sys., 33, 125, 2002.

4. Cameron, T., The year of the "diversity-ecosystem function" debate, Trends Ecol. Evol, 17, 495, 2002.

5. Diaz, S. and Cabido, M., Vive la différence: plant functional diversity matters to ecosystem processes, Trends Ecol. Evol., 16, 646, 2001.

6. Wright, I.J. et al., The world-wide leaf economics spectrum, Nature, 428, 821, 2004.

7. Niklas, K.J., Plant Biomechanics: An Engineering Approach to Plant Form and Function, University of Chicago Press, Chicago, 1992.

8. Timoshenko, S.P, Strength of Materials, van Nostrand, Princeton, 1941.

9. Niklas, K.J. and Spatz, H.C., Methods for calculating factors of safety for plant stems, J. Exp. Biol., 202, 3273, 1999.

10. Stokes, A. et al., Mechanical resistance of different tree species to rockfall in the French Alps, Plant Soil, in press. DOI: 10.1007/s11104-005-3899-3.2005.

11. Mosbrugger, V., The tree habit in land plants: A functional comparison of trunk constructions with a brief introduction into the biomechanics of trees, Lecture notes in earth sciences, Vol. 28, Springer-Verlag, Heidelberg, 1990, p. 161.

12. Wilson, B.F., The Growing Tree, The University of Massachusetts Press, Amherst, 1984.

13. Skaar, C., Wood-Water Relations, Springer-Verlag, Heidelberg, 1988.

14. Kollman, F.F.P and Cote, W.A., Principles of Wood Science and Technology, I. Solid Wood, Springer-Verlag, Heidelberg, 1968.

15. Hogan, C.J. and Niklas, K.J., Temperature and water content effects on the viscoelas-tic behavior of Tilia americana (Tiliaceae) sapwood, Trees-Struct. Funct., 18, 339, 2004.

16. Coutand, C. et al., Comparison of mechanical properties of tension and opposite wood in Populus, Wood Sci. Technol., 38, 11, 2004.

17. Guitard, D., Mécanique du Bois et Composites, Cepadues, Toulouse, 1987.

18. Gibson, L.J. and Ashby, M.F., Cellular Solids, Pergamon Press, Oxford, 1988.

19. McMahon, T.A. and Kronauer, R.E., Tree structures: deducing the principle of mechanical design, J. Theor. Biol., 59, 443, 1976.

20. Niklas, K.J., Influence of tissue density — specific mechanical properties on the scaling of the plant height, Ann. Bot., 72, 173, 1993.

21. Sterck, F. and Bongers, F., Ontogenetic changes in size, allometry, and mechanical design of tropical rainforest trees, Am. J. Bot., 85, 266, 1998.

22. Barnett, J.R. and Bonham, V.A., Cellulose microfibril angle in the cell wall of wood fibres, Biol. Rev., 79, 2004.

23. Fratzl, P., Burgert, I., and Keckes, J., Mechanical model for the deformation of the wood cell wall, Z. Metallkd, 95, 579, 2004.

24. Timell, E., Compression Wood in Conifers, Springer-Verlag, Heidelberg, 1987.

Zobel, B.J. and Buijtenen, J.P.v., Wood variation: its causes and control, in Wood Variation: Its Causes and Control, Springer-Verlag, Berlin, 1989. Baas, P., Jansen, S., and Wheeler, E., Ecological adpatations in wood microstructure and angiosperm phylogeny, IAWA J., 23, 60, 2002.

Favrichon, V., Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d'un modèle de dynamique de peuplement en Guyane française. (Classification of tree species in forests of French Guiana into functional groups based on a dynamic vegetation community matrix.), Rev. Ecol. (Terre et Vie), 49, 379, 1994. Turner, I.M., Ed. The Ecology of Trees in the Tropical Rain Forest, Cambridge Tropical Biology Series, Cambridge University Press, London, 2001, p. 298. Zhang, S.Y. et al., Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence, Can. J. Forest Res., 23, 2587, 1993.

Hillis, W.E., Heartwood and Tree Exudates, Springer-Verlag, Berlin, 1987. Grzeskowiak, V., Le bois juvénile de deux angiospermes à pores diffus (Populus euramericana cv I214, Dicorynia guianensis): variations radiales et avec la hauteur des caractères anatomiques, de l'infradensité et du retrait radial, doctorate thesis, ENGREF: Nancy Paris Montpellier, 1997.

Schniewind, A.P., Horizontal specific gravity variation in tree stems in relation to their support function, Forest Sci., 8, 111, 1962.

Wiemann, M.C. and Williamson, G.B., Wood specific gravity gradients in tropical and montane rain forest trees, Am. J. Bot., 76, 924, 1989.

Woodcock, D.W. and Shier, A.D., Wood specific gravity and its radial variations: the many ways to make a tree, Trees-Struct. Funct., 16, 437, 2002. Laroze, S. and Barrau, J.J., Calcul des structures en matériau composites. Mecanique des structures. Masson, Paris, 1987.

Fournier, M. et al., Mécanique de l'arbre sur pied: modélisation d'une structure en croissance soumise à des chargements permanents et évolutifs. II. Analyse des contraintes de support, Ann. Sci. Forest., 48, 513, 1991.

Fournier, M., Baillères, H., and Chanson, B., Tree biomechanics: growth, cumulative pre-stresses and reorientations, Biomimetics, 2, 229, 1994.

Falster, D.S. and Westoby, M., Plant height and game theory, Trends Ecol. Evol, 18, 337, 2003.

Becker, P., Meinzer, F.C., and Wullschleger, S.D., Hydraulic limitation of tree height: a critique, Funct. Ecol., 14, 4, 2000.

Ryan, M.G. and Yoder, B.J., Hydraulic limits to tree height and tree growth, BioScience, 47, 235, 1997.

Midgley, J.J., Is bigger better in plants? Hydraulic costs of increasing plant height, Trends Ecol. Evol., 18, 5, 2003.

Holbrook, N.M. and Putz, F.E., Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua, Am. J. Bot., 76, 1740, 1989.

Ancelin, P, Modélisation du comportement biomécanique de l'arbre dans son environnement forestier. Application au Pin maritime, in Ecole doctorale de sciences physiques et de l'ingénieur, doctorate thesis. Université Bordeaux I. Bordeaux, 2001, p. 182.

Ancelin, P, Courbaud, B., and Fourcaud, T., Developing an individual tree based mechanical model to predict wind damage within forest stands, Forest Ecol. Manag., 203, 101, 2004.

45. Ancelin, P, Fourcaud, T., and Lac, P., Modelling the biomechanical behaviour of growing trees at the forest stand scale. Part I: Development of an incremental transfer matrix method and application on simplified tree structures, Ann. Forest Sci., 61, 263, 2004.

46. Tateno, M., Increase in lodging safety factor of thigmomorphogenetically dwarfed shoots of mulberry tree, Phys. Plant, 81, 239, 1991.

47. Metzger, K., Der Wind als massgebender Faktor fur das Wachsthum der Baume, Mundener Forstl., 3, 35, 1893.

48. Greenhill, M.A., Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow, Proc. Cambridge Philos. Soc., IV, PT II, 1881, 5.

49. King, D.A. and Loucks, O.L., The theory of tree bole and branch form, Radiat. Environ. Bioph., 15, 141, 1978.

50. King, D.A., Tree dimensions: maximizing the height growth in dense stands, Oeco-logia, 51, 351, 1981.

51. Moulia, B. and Fournier-Djimbi, M., Optimal mechanical design of plant stems: the models behind the allometric power laws, in Plant Biomechanics, Centre for Biomi-metics, The University of Reading, Reading, UK, 1997.

52. McMahon, T.A., The mechanical design of trees, Sci. Am, 233, 92, 1975.

53. Esser, M.H.M., Tree trunks and branches as optimum mechanical supports of the crown: I. The trunk, Bull. Math. Biophys, 8, 65, 1946.

54. King, D.A., Tree form, height growth, and susceptibility to wind damage in Acer saccharum, Ecology, 67, 980, 1986.

55. Mattheck, C., Trees: The Mechanical Design, Springer-Verlag, Heidelberg, 1991.

56. Niklas, K.J. and Spatz, H.C., Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass, Proc. Natl. Acad. Sci., 101, 15661, 2004.

57. Niklas, K.J., Plant Allometry: The Scaling of Form and Process, University of Chicago Press, Chicago, 1994.

58. Claussen, J.W. and Maycock, C.R., Stem allometry in a North Queensland tropical rainforest, Biotropica, 27, 1995.

59. Rich, P.M. et al., Height and diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest, Bull. Torrey Bot. Club, 113, 241, 1986.

60. King, D.A., Allometry and life history of tropical trees, J. Trop. Ecol., 12, 25, 1996.

61. Kohyama, T. and Hotta, M., Significance of allometry in tropical saplings, Funct. Ecol., 4, 515, 1990.

62. Almeras, T. and Gril, J., Bending of apricot tree branches under the weight of axillary growth: test of a mechanical model with experimental data, Trees-Struct. Funct., 16, 5, 2002.

63. Schaeffer, B., Biomécanique. Forme d'équilibre d'une branche d'arbre, C. R. Acad. Sci., 1991.

64. Castera, P. and Morlier, V., Growth patterns and bending mechanics of branches, Trees-Struct. Funct., 5, 232, 1991.

65. Cruz, C. et al., Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity, Mycorrhiza, 14, 177, 2004.

66. Fitter, A.H. et al., Architectural analysis of plant root systems I. Architectural correlates of exploitation efficiency, New Phytol., 118, 375, 1991.

67. Fitter, A.H. and Stickland, T.R., Architectural analysis of plant root systems II. Influence of nutrient supply on architecture in contrasting plant species, New Phytol., 118, 383, 1991.

Stokes, A., Ed. The supporting roots of trees and woody plants: form, function and physiology, in Developments in Plant and Soil Sciences, Vol. 87, Kluwer Academic Publishers, Dordrecht, 2000, p. 426.

Ennos, A.R., The mechanics of root anchorage, Adv. Bot. Res. Inc. Adv. Plant Path., 33, 133, 2000.

Ennos, A.R., The anchorage of leek seedlings: the effect of root length and soil strength, Ann. Bot., 65, 409, 1990.

Waldron, L.J. and Dakessian, S., Soil reinforcement by roots: calculation of increased soil shear resistance from root properties, Science, 132, 427, 1981. Stokes, A., Biomechanics of tree root anchorage, in Plant Roots: The Hidden Part, U. Kafkaki, Ed., Marcel Dekker, New York, 2002, p. 175.

Mickovski, S.B. and Ennos, A.R., The effect of unidirectional stem flexing on shoot and root morphology and architecture in young Pinus sylvestris trees, Can. J. Forest Res, 33, 2202, 2003.

Ennos, A.R., The biomechanics of root anchorage, Biomimetics, 2, 129, 1994. Crook, M.J. and Ennos, A.R., The anchorage mechanics of deep-rooted larch Larix europea x L. japonica, J. Exp. Bot., 47, 1509, 1996.

Ennos, A.R., The mechanics of anchorage in seedlings of sunflower, Helianthus annuus L, New Phytol., 113, 185, 1989.

Watson, A., Phillips, C., and Marden, M., Root strength, growth, and rates of decay: root reinforcement changes of two tree species and their contribution to slope stability, Plant Soil, 217, 39, 1999.

Schmidt, K.M. et al., The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotechnol. J., 38, 995, 2001.

Roering, J.J. et al., Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range, Can. Geotechnol. J., 40, 237, 2003. Hathaway, R.L. and Penny, D., Root strength in some Populus and Salix clones, New Zeal. J. Bot., 13, 333, 1975.

Jonasson, S. and Callaghan, T.V., Root mechanical-properties related to disturbed and stressed habitats in the Arctic, New Phytol, 22, 179, 992. Makarova, O.V., Cofie, P. and Koolen, A.J., Axial stress-strain relationships of fine roots of beech and larch in loading to failure and in cyclic loading, Soil Till. Res., 45, 175, 1998.

Genet, M. et al., The influence of cellulose content on tensile strength in tree roots, Plant Soil, in press, 2006.

Wu, W.M. and R.C. Sidle, A distributed slope stability model for steep forested basins, Water Resour. Res., 31, 2097, 1995.

Cambell, K.A. and Hawkins, C.D.B., Paper birch and lodgepole pine root reinforcement in coarse-, medium-, and fine-textured soils, Can. J. For. Res., 33, 1580, 2003. Wu, T.H., McKinnel, W.P, and Swantson, D.N., Strength of tree roots and landslides on Prince of Wales Island, Can. J. Geotechnol., 16, 19, 1979. Nakamura, H., Nghiem, Q.M., and Iwasa, N., The influence of root reinforcement on slope stability: a case study from the Ozawa slope in Iwate Prefecture, Japan, in Eco- and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability, Stokes, A., Norris, J.E., Spanos, I., and Cammeraat, L.H., Eds., Kluwer Academic Publishers, Dordrecht, 2006.

88. Stokes, A., Mickovski, S.B., and Thomas, B.R., Eco-engineering for the long-term protection of unstable slopes in Europe: developing management strategies for use in legislation, in Landslides: Evaluation & Stabilization, Lacerda, W.A., Erlich, M., Fontoura, S.A.B., and Sayao, A.S.F., Eds., Balkema, 1685.

89. Dupuy, L., Fourcaud, T., and Stokes, A., A numerical investigation into factors affecting the anchorage of roots in tension, Eur. J. Soil Sci., 56, 319, 2005.

90. Stokes, A. et al., Responses of young trees to wind and shading: effects on root architecture, J. Exp. Bot., 46, 21, 1995.

91. Stokes, A. et al., An experimental investigation of the resistance of model root systems to uprooting, Ann. Bot., 78, 415, 1996.

92. Ennos, A.R. and Fitter, A.H., Comparative functional morphology of the anchorage systems of annual dicots, Funct. Ecol, 6, 71, 1992.

93. Köstler, J.N., Brückner, E., and Bibelriether, H., Die Wurzeln der Waldbäume, Paul Parey, Hamburg, 1968.

94. Gartner, B.L., Root biomechanics and whole-plant allocation patterns — responses of tomato plants to stem flexure, J. Exp. Bot., 45, 1647, 1994.

95. Fourcaud, T., Danjon, V., and Dupuy, V., Numerical analysis of the anchorage of maritime pine trees in connection with their root structure, in International Conference "Wind Effects on Trees," University of Karlsruhe, Germany, September 16-18 2003, Ruck, B., Kottmeier, C., Mattheck, C., Quine, G., Wilhelm, G., pp. 323-330.

96. Dupuy, L., Fourcaud, T., and Stokes, A., A numerical investigation into the influence of soil type and root architecture on tree anchorage, Plant Soil, in press, 2006.

97. Coutts, M.P, Root architecture and tree stability, in Tree Root Systems and Their Mycorrhizas, Plant and Soil, 71, 171, 1983.

98. Coutts, M.P., Components of tree stability in Sitka spruce on peaty gley soil, Forestry, 59, 173, 1986.

99. Richards, P.W., The Tropical Rainforest, Second Edition, Cambridge University Press, Cambridge, 1996, p. 453.

100. Kaufman, L., The role of developmental crises in the formation of buttresses: a unified hypothesis, Evol. Trend. Plant., 2, 39, 1988.

101. Crook, M.J., Ennos, A.R., and Banks, J.R., The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and not-buttressed (Mallotus wrayi) tropical trees, J. Exp. Bot., 48, 1703, 1997.

102. Clair, B. et al., Biomechanics of buttressed trees: bending strains and stresses, Am. J. Bot., 90, 1345, 2003.

103. Nicoll, B.C. and Ray, D., Adaptive growth of tree root systems in response to wind action and site conditions, Tree Physiol., 16, 891, 1996.

104. Ennos, A.R., The function and formation of buttresses, Trends Ecol. Evol., 8, 350, 1993.

105. Stokes, A., Strain distribution during anchorage failure of Pinus pinaster Ait. at different ages and tree growth response to wind-induced root movement, Plant Soil, 217, 17, 1999.

106. Hintikka, V., Wind-induced movements in forest trees, Metsäntutkimuslitoksen Jul-kaisuja, 76, 1, 1972.

107. Mickovski, S.B. and Ennos, A.R., A morphological and mechanical study of the root systems of suppressed crown Scots pine Pinus sylvestris, Trees-Struct. Funct., 16, 274, 2002.

108. Niklas, K.J. et al., The biomechanics of Pachycereus pringlei root systems, Am. J. Bot., 89, 12, 2002.

Tamasi, E. et al., Influence of wind stress on root system development and architecture in oak seedlings (Quercus robur L.), Trees-Struct. Funct., 19, 374, 2005. Moore, J.R., Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types, Forest Ecol. Manag, 135, 63, 2000. Fourcaud, T. et al. Application of plant architectural models to biomechanics, in PMA03 — Plant growth modeling and applications, Hu, B. and Jaeger, M. Eds., Tsinghua University Press-Springer, Beijing, China, Springer, 2003. Dupuy, L., Fourcand, T., Lac, P, and Stokes, A., Modelling the influence of morphological and mechanical properties on the anchorage of root systems, in International conference "Wind Effect on Trees," September 16-18, 2003, University of Karlsruhe, Germany, Ruck, B., Koltmeier, C., Mattheck, C., Quine, G., and Wilhelm, G., pp. 315-322.

Speck, T., Bending stability of plant stems: ontogenetical, ecological and phyloge-netical aspects, Biomimetics, 2, 109, 1994.

Jaffe, M.J., Morphogenetic responses of plants to mechanical stimuli or stress, Bioscience, 30, 239, 1980.

Weiher, E. et al., Challenging Theophrastus: a common core list of plant traits for functional ecology, J. Veg. Sci., 10, 609, 1999.

Jaffe, M.J., Leopold, A.C., and Staples, R.C., Thigmoresponses in plants and fungi, Am. J. Bot., 89, 382, 2002.

Telewski, F.W. and Jaffe, M.J., Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation, Physiol. Plantarum, 66, 219, 1986.

Pruyn, M., Ewers, B.J., and Telewski, F.W., Thigmomorphogenesis: changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation, Tree Physiol., 20, 535, 2000.

Coutand, C. et al., Les sollicitations mécaniques, des régulateurs de la répartition de la biomasse chez les ligneux, Conference "Réseau d'Ecophysiologie de l'Arbre," France, Cruiziat, P and Dreyer, E., Eds., INRA, 2003.

Telewski, F. W., Structure and function of flexure wood in Abies fraseri, Tree Physiol., 5, 123, 1989.

Sellier, D. and Fourcaud, T., Relationship between the oscillations of young pines (Pinus pinaster Aït.) and their aerial architecture, J. Exp. Bot., 56, 1563, 2005. Coutand, C. and Moulia, B., Biomechanical study of the effect of a controlled bending on tomato stem elongation: local strain sensing and spatial integration of the signal, J. Exp. Bot., 51, 1825, 2000.

Coutand, C. et al., Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis, J. Exp. Bot., 51, 1813, 2000. Jacobs M.R., The effect of wind sway on the form and development of Pinus radiata D. Don., Aust. J. Bot., 2, 35, 1954.

Telewski, F.W. and Pruyn, M.L., Thigmomorphogenesis: a dose response to flexing in Ulmus americana seedlings, Tree Physiol., 18, 65, 1998.

Hal, H. and Thomas, S.C., Interactive effects of lateral shade and wind on stem allometry, biomass allocation, and mechanical stability in Abutilon theophrasti (Malvaceae), Am. J. Bot., 89, 1609, 2002.

Mitchell, S.J., Effects of mechanical stimulus, shade, and nitrogen fertilization on morphology and bending resistance in Douglas-fir seedlings, Can. J. Forest Res., 33, 1602, 2003.

Berthier, S. and Stokes, A., Phototropic response induced by wind loading in maritime pine seedlings (Pinus pinaster Ait.), J. Exp. Bot., 56, 851, 2005.

129. Stacey, G.R. et al., Wind flows and forces in a model spruce forest, Bound.-Lay. Meteorol., 69, 311, 1994.

130. Rudnicki, M., Mitchell, S.J., and Novak, M.D., Wind tunnel measurements of crown streamlining and drag relationships for three conifer species, Can. J. Forest Res., 34, 666, 2004.

131. Moulia, B. and Combes, D., Thigmomorphogenetic Acclimation of Plants to Moderate Winds Greatly Affects Height Structure in Field-Gown Alfalfa (Medicago sativa L.), an Indeterminate Herb, Society for Experimental Biology, General Congress, Edinburgh, 2004.

132. Lawton, R.O., Wind stresses and elfin stature in a montane rain forest tree: an adaptive explanation, Am. J. Bot., 69, 1224, 1982.

133. Py, C. et al., A new technique for the measurement of the wind induced motion of a plant canopy, in Flow Induced Vibration, Congress, Paris, 2004.

134. Mattheck, C., Bethge, K., and Schafer, J., Safety factors in trees, J. Theoret. Biol., 165, 185, 1993.

135. Mattheck, C., Why they grow, how they grow: the mechanics of trees, Arboricultural J., 14, 1, 1990.

136. Mattheck, C. and Bethge, K., The structural optimization of trees, Naturwissenschaften, 85, 1, 1998.

137. West, PW., Jackett, D.R., and Sykes, S.J., Stresses in, and the shape of, tree stems in forest monoculture, J. Theoret. Biol., 140, 327, 1989.

138. Niklas, K.J. and Spatz, H.C., Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels, Trees-Struct. Funct., 14, 230, 2000.

139. Mattheck, C., Comments on "Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels" by Niklas, K.J., Spatz, H.-C., Trees-Struct. Funct., 15, 2000.

140. Salisbury, F.B. and Ross, C.W., The power of movement in plants, in Plant Physiology, 4th ed., Wadsworth, Belmont, CA, 1992, chap. 19.

141. Wilson, B.F. and Archer, R.R., Tree design: some biological solutions to mechanical problems, Bioscience, 29, 293, 1979.

142. Scurfield, G., Reaction wood: its structure and function, Science, 179, 647, 1973.

143. Fournier, M. et al., Mécanique de l'arbre sur pied: modélisation d'une structure en croissance soumise à des chargements permanents et évolutifs. II. Analyse tridimensionnelle des contraintes de maturation — cas du feuillu standard, Ann. Sci. Forest., 48, 527, 1991.

144. Archer, R.R. and Byrnes, F.E., On the distribution of tree growth stresses. Part I. An anisotropic plane strain theory, Wood Sci. Technol., 8, 184, 1973.

145. Archer, R.R., Growth stresses and strains in trees. Springer Series in Wood Sciences, Springer Verlag, Heidelberg, 1987.

146. Bamber, R.K., A general theory for the origin of growth stresses in reaction wood: how trees stay upright, IAWA J, 22, 205, 2001.

147. Yamamoto, H. and Okuyama, T., Analysis of the generation process of growth stresses in cell walls, Mokuzai Gakkaishi, 34, 788, 1988.

148. Yamamoto, H. et al., Origin of the biomechanical properties of wood related to the fine structure of the multilayered cell wall, Trans. ASME, 124, 432, 2002.

149. Boyd, J., Compression wood force generation and functional mechanics, New Zeal. J. Forest Sci., 3, 240, 1973.

150. Fourcaud, T. et al., Numerical modelling of shape regulation and growth stresses in trees. II. Implementation in the AMAPpara software and simulation of growth, Trees-Struct. Funct., 17, 31, 2003.

Fourcaud, T. and Lac, P., Numerical modelling of shape regulation and growth stresses in trees. I. An incremental static finite element formulation, Trees-Struct. Funct., 17, 23, 2003.

Fournier, M. et al., Mesures des déformations résiduelles de croissance à la surface des arbres en relation avec leur morphologie. Observations sur différentes espèces, Ann. Sci. Forest., 51, 249, 1994.

Yamamoto, H., Okuyama, T., and Iguchi, M., Measurement of growth stresses on the surface of a leaning stem, Mokuzai Gakkaishi, 35, 595, 1989.

Sinnott, E.W., Reaction wood and the regulation of tree form, Am. J. Bot., 39, 69,


Meskausas, A., Jurkoniene, S., and Moore, D., Spatial organization of the gravitropic response in plants: applicability of the revised local curvature distribution model to Triticum aestivum coleoptiles, New Phytol., 143, 401, 1999.

Meskausas, A., Moore, D., and Novak Frazer, L., Mathematical modelling of morphogenesis in fungi: spatial organization of the gravitropic response in the mushroom stem of Coprinus cinereus, New Phytol., 140, 111, 1998. Salisbury, F.B., Gravitropism: changing ideas, Hortic. Rev., 15, 233, 1993. Hart, J.W., Plant Tropisms and Other Growth Movements, Unwin Hyman, London, 1989.

Stokes, A. and Guitard, D., Tree root response to mechanical stress, in Biology of Root Formation and Development, Waisel, Y., Ed., Plenum Press: New York, 227, 1997.

Niklas, K.J., Variations of the mechanical properties of Acer saccharum roots, J. Exp. Bot, 50, 193, 1999.

Odum, H.T., Environment, Power and Society, Wiley Interscience, New York, 1971. Painter, D.J., Forty-nine shades of green: ecology and sustainability in the academic formation of engineers, Ecol. Eng., 20, 267, 2003.

Mitsch, W.J., Ecological engineering: a new paradigm for engineers and ecologists, in Engineering within Ecological Constraints, S. PC, Ed., National Academy Press: Washington DC, 1996, p. 111.

Coppin, N.J. and Richards, I.G., Use of Vegetation in Civil Engineering, Butterworths, London, 1990.

Schiechtl, H.M., Bioengineering for Land Reclamation and Conservation, University of Alberta Press, Edmonton (Alberta), 1980, p. 404. Barker, D.H., Vegetation and Slopes, Thomas Telford, London, 1995. Wu, T.H., Watson, A., and El-Khouly, M.A., Soil-root interaction and slope stability, in Ground and Water Bioengineering for Erosion Control and Slope Stabilization, Barker, D.H. et al., Eds., Science Publishers, Enfield, NH, 2004, p. 183. Mickovski, S.B., Decision support systems in eco-engineering: The case of the SDSS, in Eco- and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability, Cammeraat, L.H., Ed., Kluwer Academic Publishers, Dordrecht, 2005. Mickovski, S.B., Stokes, A., and van Beek, L.P.H., A decision support tool for windthrow hazard assessment and prevention, Forest Ecol. Manag., 216, 64, 2005. Dorren, L.K.A. and Seijmonsbergen, A.C., Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale, Geomorphology, 56, 49, 2003. Ott, E., Guidelines for the protective role of forests in avalanche formation, Forstwis-senssch. Centralblatt, 115, 223, 1996.

Motta, R. and Haudemand, J.C., Protective forests and sylvicultural stability: an example of planning in the Aosta Valley, Mountain. Res. Dev., 20, 180, 2000.

173. Brang, P., Resistance and elasticity: promising concepts for the management of protection forests in the European Alps, Forest Ecol. Manag., 145, 107, 2001.

174. Hurand, A. and Berger, F., Forêts et risques naturels. Protection contre l'érosion, les mouvements de terrain et les avalanches, La Houille Blanche, 3, 64, 2002.

175. Dorren, L.K.A. et al., Mechanisms, effects and management implications of rockfall in forests, Forest Ecol. Manag., 215, 1S3, 2005.

176. Quine, C.P et al., Forests and Wind: Management to Minimise Damage, Bulletin 114, Her Majesty's Stationery Office, London, 1995.

2 Diversity of Mechanical Architectures in Climbing Plants: An Ecological Perspective

Nicholas P. Rowe, Sandrine Isnard, Friederike Gallenmuller, and Thomas Speck

Was this article helpful?

0 0

Post a comment