References

Agerer, R. (2001). Exploration types of ectomycorrhizae. Mycorrhiza, 11, 107-114. Bardgett, R.D. (2005). The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford.

Beare, M.H., Parmelee, R.W., Hendrix, P.F., Cheng, W., Coleman, D. and Crossley, D.A. (1992). Microbial and faunal interactions and effects on litter nitrogen and decomposition in ecosystems. Ecological Monographs, 62, 569-591. Bebber, D.P., Tlalka, M., Hynes, J., Darrah, P.R., Ashford, A.E., Watkinson, S.C., Boddy, L. and Fricker, M.D. (2007). Imaging complex nutrient dynamics in mycelial networks. In: Fungi in the Environment (G.M. Gadd, P. Dyer and S.C. Watkinson, eds.), pp. 3-21. Cambridge University Press, Cambridge. Bidartondo, M.I. and Bruns, T.D. (2001). Extreme specificity in epiparasitic Monotropoideae (Ericaceae): Widespread phylogenetic and geographical structure. Molecular Ecology, 10, 2285-2295. Binder, M. and Hibbet, D.S. (2002). Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. Molecular Phylogeny and Evolution, 22, 76-90.

Boddy, L. (1999). Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia, 91, 13-32.

Boddy, L. and Jones, H.T. (2007). Mycelial responses in heterogeneous environments: Parallels with macroorganisms. In: Fungi in the Environment (G.M. Gadd, S.C. Watkinson and P. Dyer, eds.), pp. 112-140. Cambridge University Press, Cambridge.

Boddy, L. and Watkinson, S.C. (1995). Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany, 73(Suppl. 1), S1377-S1383.

Burnett, J. (2003). Fungal Populations and Species. Oxford University Press, Oxford.

Caddick, M.X. (2004). Nitrogen regulation in mycelial fungi. In: The Mycota: Biochemistry and Molecular Biology III (R. Bramble and G.A Marzluf, eds.), 2nd edn., pp. 349-368. Springer, Berlin.

Cairney, J.W.G. (2005). Basidiomycete mycelia in forest soils: Dimensions, dynamics and roles in nutrient distribution. Mycological Research, 109, 7-20.

Cole, L., Orlovich, D.A. and Ashford, A.E. (1998). Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genetics and Biology, 24, 86-100.

Collins Johnson, N., Hoeksema, J.D., Bever, J.D., Bala Chaudhury, V., Gehring, C., Klironomos, J., Koide, R., Miller, M.R., Moore, J., Moutoglis, P., Schwartz, M., Simards, S., Swenson, W., Umbanhowar, J., Wilson, G. and Zabinski, C. (2006). From Lilliput to Brobdingnag: Extending models of mycorrhizal function across scales. Bioscience, 56, 889-900.

Cooper, T.G. (2004). Integrated regulation of the nitrogen-carbon interface. In: Topics in Current Genetics 7, Nutrient-Induced Responses in Eukaryotic Cells (J. Winderickx and P.M. Taylor, eds.), pp. 225-257. Springer, Berlin.

Currie, W.S. (1999). The responsive C and N biogeochemistry of the temperate forest floor. Trends in Ecology and Evolution, 14, 316-320.

Darrah, P.R., Tlalka, M., Ashford, A.E., Watkinson, S.C. and Fricker, M.D. (2006). The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryotic Cell, 5, 1111-1125.

Davidson, F.A. (2006). Mathematical modeling of the form and function of fungal mycelia. In: Fungi in the Environment (G.M. Gadd, S.C. Watkinson and P. Dyer, eds.), pp. 57-73. Cambridge University Press, Cambridge.

Davidson, E.A., Hart, S.C. and Firestone, K. (1992). Internal cycling of nitrate in soils of a mature coniferous forest. Ecology, 73, 1148-1156.

Dighton, J. (2003). The Role of Fungi in Ecosystem Processes. Marcel Dekker, New York, NY.

Dobson, J., Power, J.M., Singh, J. and Watkinson, S.C. (1993). The effectiveness of 2-aminoisobutyric acid as a translocatable fungistatic agent for the remedial treatment of dry rot caused by Serpula lacrymans in buildings. International Biodeterioration and Biodegradation, 31, 129-141.

Ettema, C.H. and Wardle, D. (2002). Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183.

Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Guber, N., Hibbard, K., Hogberg, P., Liner, S., Mackenzie, F.T., Moore, B., Pederson, T., Rosenthal, Y., Seitzinger, S., Smet-acek, V. and Steffen, W. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291-296.

Frankland, J.C. (1982). Biomass and nutrient cycling by decomposer basidiomycetes. In: Decomposer Basidiomycetes: Their Biology and Ecology (J.C. Frankland, J.N. Hedger and M.J. Swift, eds.), pp. 241-261. Cambridge University Press, Cambridge.

Frankland, J.C., Hedger, J.N. and Swift, M.J., eds. (1982). Decomposer Basidiomycetes: Their Biology and Ecology. Cambridge University Press, Cambridge.

Frey, S.D., Elliott, E.T., Paustian, K. and Peterson, G.A. (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology and Biochemistry, 32, 689-698.

Frey, S.D., Six, J. and Elliott, E.T. (2003). Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biology and Biochemistry, 35, 71001-1004.

Fricker, M.D., Bebber, D., Tlalka, M., Watkinson, S.C., Boddy, L., Yiasoumis, L., Cartwright, H.M., Meskaukas, A., Moore, D., Smith, D.M.D., Nakagaki, T., Lee, C.F. and Johnson, N. Inspiration from microbes: From patterns to networks. In: Complex Systems and Inter-Disciplinary Science

(B.W. Arthur, R. Axtell, S. Bornholdt, J. Efstathiou, P.M. Hui, P. Maini, M. Nowak, R. Sole, D. Stauffer, F. Reed-Tsochas and K. Turner, eds.). World Scientific Publishing Company, London, in press.

Fricker, M., Tlalka, M., Bebber, D., Watkinson, S.C. and Darrah, P.R. (2007). Fourier-based spatial mapping of oscillatory phenomena in fungi. Technical Advance. Fungal Genetics and Biology, in press.

Glass, N.L. and Kaneko, I. (2003). Fatal attraction: Nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryotic Cell, 2, 1-8.

Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bucking, H., Lammers, P.J. and Shachar-Hill, Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819-823.

He, X.-H., Critchley, C. and Bledsoe, C. (2003). Nitrogen transfer within and between plants through common mycorrhizal networks. Critical Reviews in Plant Sciences, 22, 531-567.

Hibbett, D.S. and Binder, M. (2002). Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proceedings of the Royal Society B, 269, 1963-1969.

Hibbett, D.S., Gilbert, L.-Z. and Donoghue, M.J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506-508.

Jennings, L. and Watkinson, S.C. (1982). The structure and development of mycelial strands in Serpula lacrymans. Transactions of the British Mycological Society, 78, 465-474.

Jentschke, G., Brandes, B., Kuhn, A.J., Schroder, W.H. and Godbold, D.L. (2001). Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327-337.

Kasuga, T., Townsend, J.P., Tian, C., Gilbert, L.B., Mannhaupt, G., Taylor, J.W. and Glass, N.L. (2005). Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Research, 33, 6469-6485.

Kauserud, H., Hogberg, N., Knudsen, H., Elborne, S.A. and Schumacher T. (2004). Molecular phylo-genetics suggests a North American link between the anthropogenic dry rot fungus Serpula lacrymans and its wild relative S. himantioides. Molecular Ecology, 13, 3137-3146.

Kauserud, H., Saetre, G.-P., Schmidt, O., Decock, C. and Schumacher, T. (2006). Genetics of self/ nonself recognition in Serpula lacrymans. Fungal Genetics and Biology, 43, 503-510.

Kaye, J.P. and Hart, S.C. (1997). Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution, 12, 139-143.

Klionsky, D.J., Herman, P.K. and Emr, S.D. (1990). The fungal vacuole: Composition, function and biogenesis. Microbiological Reviews, 54, 226-292.

Knorr, M., Frey, S.D. and Curtis, P.S. (2005). Nitrogen additions and litter decomposition, a meta-analysis. Ecology, 86, 3252-3257.

Koljalg, U., Dahlberg, A., Taylor, A.F.S., Larsson, E., Hallenberg, N., Stenlid, J.K., Larsson, K.-H., Fransson, P.M., Karén, O. and Jonsson, L. (2000). Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Molecular Ecology, 9, 1985-1996.

Leake, J. (2005). Plants parasitic on fungi: Unearthing the fungi in mycoheterotrophs and debunking the 'saprophytic' plant myth. Mycologist, 19, 113-122.

Leake, J., Johnson, D., Donnelly, D. and Boddy, L. (2004). Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Canadian Journal of Botany, 82, 1016-1045.

Lindahl, B., Finlay, R. and Olsson, S. (2001). Simultaneous, bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytologist, 150, 189-194.

Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Hogberg, P., Stenlid, J. and Finlay, R.D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, in press.

Lindahl, B., Stenlid, J., Olsson, S. and Finlay, R. (1999). Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist, 144, 183-193.

Lindahl, B., Taylor A.F.S. and Finlay, R.D. (2002). Defining nutritional constraints on carbon cycling in boreal forests — Towards a less 'phytocentric' perspective. Plant and Soil, 242, 123-135.

Meskauskas, A., Fricker, M.D. and Moore, D. (2004). Simulating colonial growth of fungi with the neighbour-sensing model of hyphal growth. Mycological Research, 108, 1241-1256.

Moncalvo, J.-M., Lutzoni, F.M., Rehner, S.A., Johnson, J. and Vilgalys, R. (2002). One hundred and seventeen clades of euagarics. Molecular Phylogeny and Evolution, 23, 357-400.

Money, N. (2007). Plagues upon houses and cars: The unnatural history of Meruliporia incrassata, Serpula lacrymans and Sphaerobolus stellatus. In: Fungi in the Environment (G.M. Gadd, S.C. Watkinson and P. Dyer, eds.), pp. 288-308. Cambridge University Press, Cambridge.

Olsson, P.A., Jakobsen, I. and Wallander, H. (2002). Foraging and resource allocation strategies of mycorrhizal fungi in a patch environment. In: Mycorrhizal Ecology (M.G.A. van der Heijden and I. Sanders, eds.), pp. 93-115. Springer, Berlin. Ecological Studies 157.

Perez-Moreno, J. and Read, D.J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301-309.

Post, W.M., Emanuel, W.R., Zinke, P.J. and Stangenberger, A.G. (1982). Soil carbon pools and world life zones. Nature, 298, 15-156.

Ramsbottom, J. (1953). Mushrooms and Toadstools: A Study of the Activities of Fungi, pp. 233-246. Collins, London.

Rayner, A.D.M. and Todd, N.K. (1982). Population structure in wood-decomposing basidiomycetes. In: Decomposer Basidiomycetes: Their Biology and Ecology (J.C. Frankland, J.N. Hedger and M.J. Swift, eds.), pp. 109-128. Cambridge University Press, Cambridge.

Read, D.J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376-391.

Read, D.J. (1997). The ties that bind. Nature, 388, 517-518.

Read, D.J. and Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytologist, 157, 475-492.

Richter, D.D. and Markewitz, D. (2001). Understanding Soil Change. Cambridge University Press, Cambridge.

Roosen, J., Engelen, K., Marchal, K., Mathys, J., Griffioen, G., Cameroni, E., Thevelein, J.M., De Virgilio, C., De Moor, B. and Winderickx, J. (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Molecular Microbiology, 55, 862-880.

Ryvarden, L. and Gilbertson, R.L. (1993). European Polypores, Part 1. Fungiflora, Oslo.

Simard, S.W., Perry, D.A., Jones, M.D., Myrold, D.D., Durall, D.M. and Molina, R. (1997). Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579-582.

Smith, E.A. (2006). Complexity: Implications for network-enabled effects-based operations. Pointer: Journal of the Singapore Armed Forces, 32, 13-25.

Stark, J.M. and Hart, S.C. (1997). High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature, 385, 61-64.

Swift, M.J. (1982). Basidiomycetes as components of forest ecosystems. In: Decomposer Basidiomycetes: Their Biology and Ecology (J.C. Frankland, J.N. Hedger and M.J. Swift, eds.). Cambridge University Press, Cambridge.

Tedersoo, L., Koljalg, U., Hallenberg, N. and Larsson, K.H. (2003). Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytologist, 159, 153-165.

Tlalka, M., Darrah, P.R., Hensman, D., Watkinson, S.C. and Fricker, M.D. (2003). Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of Phanerochaete velutina. New Phytologist, 158, 325-335.

Tlalka, M., Watkinson, S.C., Darrah, P.R., Bebber, D. and Fricker, M.D. (2007). Emergence of self-organised oscillatory domains in fungal mycelia. Fungal Genetics and Biology, in press.

Tlalka, M., Watkinson, S.C., Darrah, P.R. and Watkinson, S.C. (2002). Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes. New Phytologist, 153, 173-184.

Watkinson, S.C. (1999). Metabolism and hyphal differentiation in large basidiomycete colonies. In: The Fungal Colony (N.A.R. Gow, D. Robson and G.M. Gadd, eds.), pp.127-157. Cambridge University Press, Cambridge.

Watkinson, S.C., Bebber, D., Darrah, P.R., Fricker, M.D., Tlalka, M. and Boddy, L. (2006). The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Fungi in Biogeo-chemical Cycles (G.M. Gadd, ed.), pp. 151-181. Cambridge University Press, Cambridge.

Watkinson, S.C., Burton, K.S and Wood, D.A. (2001). Characteristics of intracellular peptidase and proteinase activities from the mycelium of a cord-forming wood decay fungus, Serpula lacrymans. Mycological Research, 105, 698-704.

Watkinson, S.C., Davison, E.M. and Bramah, J. (1981). The effect of nitrogen availability on growth and cellulolysis by Serpula lacrymans. New Phytologist, 89, 295-305.

Wells, J.M., Harris, M.J. and Boddy, L. (1999). Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems of Phanerochaete velutina: Dependence on carbon availability. New Phytologist, 142, 325-334.

CHAPTER 4

Ecophysiology: Impact of Environment on Growth, Synthesis of Compatible Solutes and Enzyme Production

Naresh Magan

Contents 1. Introduction 64

2. Effects of Temperature and Water Availability on Growth 64

2.1 Temperature and Growth 64

2.2 Water Relations 66

2.3 Compatible Solutes, Tolerance of Water Stress and Translocation of Water 69

3. Enzyme Production in Relation to Environmental Factors 74 References 77

Abstract Basidiomycetes are important components of the decomposer microbial community involved in nutrient cycling and have been exploited successfully in the production of cultivated mushrooms. Environmental factors such as water availability, temperature and pH and their interactions have significant impacts on basidiomycete colonisation and fruiting potential. This chapter examines the effect that temperature, water availability and their interactions have on growth of different temperate and tropical basidiomycetes. Temperature ranges vary widely between temperate and tropical species and profiles for growth are presented. Basidiomycetes are generally more sensitive to matric than solute stress. This has been shown for Trametes species, as well as with Agaricus bisporus and Pleurotus species. The mechanisms of water-stress tolerance have received much attention, especially for cultivated species, where methods for optimising fruiting has been of interest. Sugar alcohols are involved in water-stress tolerance and the role of these in providing a gradient of water movement within mycelium of a range of cultivated and decay species. Basiodiomycetes produce significant amounts of extracellular enzymes to enable them to play such an important role in decomposition processes. Production of cellulases, ligninases and laccases occur over a wide range of temperature and water potentials.

British Mycologicai Society Symposia Series © 2008 The British Mycological Society

Published by Elsevier Ltd. All rights reserved.

At below the wilting point of plants laccases, cellulases and lignin peroxidases are produced in soil. The ability to produce copious amounts of these enzymes and their stability has resulted in their biotechnological exploitation.

0 0

Post a comment