Allen, T.R., Millar, T., Berch, S.M. and Berbee, M.L. (2003). Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytologist, 160, 255-272.

Allmer, J., Vasiliauskas, R., Ihrmark, K., Stenlid, J. and Dahlberg, A. (2006). Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification. FEMS Microbiology Ecology, 55, 57-67.

Berg, B. (1988). Dynamics of nitrogen (N-15) in decomposing Scots pine (Pinus sylvestris) needle litter: Long-term decomposition in a Scots pine forest 6. Canadian Journal of Botany, 66, 1539-1546.

Berg, B., Hannus, K., Popoff, T. and Theander, O. (1982). Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest I. Canadian Journal of Botany, 60, 1310-1319.

Berg, B. and Matzner, E. (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review, 5, 1-25.

Berg, B. and Soderstrom, B. (1979). Fungal biomass and nitrogen in decomposing Scots pine needle litter. Soil Biology and Biochemistry, 11, 339-341.

Berg, B, and Staaf, H. (1981). Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Terrestrial Nitrogen Cycles (E. Clark and T. Rosswall, eds.), pp. 163-178. Swedish Natural Science Research Council, Stockholm, Sweden.

Boddy, L. (1999). Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia, 91, 13-32.

Carreiro, M.M., Sinsabaugh, R.L., Repert, D.A. and Parkhurst, D.F. (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.

Colpaert, J.V. and van Tichelen, K.K. (1996). Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter decomposing basidiomycetes. New Phytologist, 134, 123-132.

Cooke, R.C., Rayner, A.D.M. (1984). Ecology of Saprotrophic Fungi. Longman, London, UK.

Dighton, J. and Boddy, L. (1989). Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In: Nitrogen, Phosphorus and Sulphur Utilization by Fungi (L. Boddy, R. Marchant and D.J. Read, eds.), pp. 269-298. Cambridge University Press, Cambridge.

Dowson, C.G., Rayner, A.D.M. and Boddy, L. (1989). Spatial dynamics and interactions of woodland fairy ring fungus, Clitocybe nebularis. New Phytologist, 111, 699-705.

Fahey, T.L., Yavitt, J.B., Pearson, J.A. and Knight, D.H. (1985). The nitrogen cycle in lodgepole pine forests, southeastern Wyoming. Biogeochemistry, 1, 257-275.

Fog, K. (1988). The effect of added nitrogen on the rate of decomposition of organic-matter. Biological Reviews of the Cambridge Philosophical Society, 63, 433-462.

Frankland, J.C. (1984). Autecology and the mycelium of a woodland litter decomposer. In: The Ecology and Physiology of the Fungal Mycelium (D.H. Jennings and A.D.M. Rayner, eds.), pp. 241-260. Cambridge University Press, Cambridge, UK.

Frankland, J.C. (1998). Fungal succession: Unravelling the unpredictable. Mycological Research, 102, 1-15.

Frankland, J.C., Dighton, J. and Boddy, L. (1990). Methods for studying fungi in soil and forest litter. Methods in Microbiology, 22, 343-404.

Frankland, J.C., Poskitt, J.M. and Howard, D.M. (1995). Spatial development of populations of a decomposer fungus, Mycena galopus. Canadian Journal of Botany, 73, S1399-S1406.

Frey, S.D., Elliott, E.T., Paustian, K. and Peterson, G.A. (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology and Biochemistry, 32, 689-698.

Frey, S.D., Knorr, M., Parrent, J.L. and Simpson, R.T. (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171.

Hart, S.C. and Firestone, M.K. (1990). Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry, 12, 73-97.

Hatakka, A. (2001). Biodegradation of lignin. In: Lignin, Humic Substances and Coal (M. Hofrichter and A. Steinb├╝chel, eds.), Vol. 1., pp. 129-180. Wiley-VCH, Weinheim, Germany.

Hibbett, D.S., Gilbert, L.B. and Donoghue, M.J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506-508.

Horton, T.R. and Bruns, T.D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 10, 1855-1871.

Johnsson, L., Berggren, D. and Karen, O. (1999). Content and bioavailability of organic forms of nitrogen in the O horizon of a podzol. European Journal of Soil Science, 50, 591-600.

Kelley, K.R. and Stevenson, F.J. (1995). Forms and nature of organic N in soil. Fertilizer Research, 42, 1-11.

Keyser, P., Kirk, K. and Zeikus, J.G. (1978). Ligninolytic enzyme system of Phanerochaete chrysosporium: Synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology, 135, 790-797.

Kirk, T.K. and Farrell, R.L. (1987). Enzymatic combustion: The microbial degradation of lignin. Annual Review of Microbiology, 41, 465-505.

Kirk, T.K. and Fenn, P. (1982). Formation and action of the ligninolytic system in basidiomycetes. In: Decomposer Basidiomycetes: Their Biology and Ecology (J.C. Frankland, J.N. Hedger and M.J. Swift, eds.), pp. 67-90. British Mycological Society Symposium 4. Press Syndicate of the University of Cambridge, Cambridge.

Koukol, O., Mrnka, L., Kulhankova, A. and Vosatka, M. (2006). Competition of Scleroconidioma sphagnicola with fungi decomposing spruce litter needles. Canadian Journal of Botany, 84, 469-476.

Landeweert, R., Leeflang, P., Kuyper, T.W., Hoffland, E., Rosling, A., Wernars, K. and Smit, E. (2003). Molecular identification of ectomycorrhizal mycelium in soil horizons. Applied and Environmental Microbiology, 69, 327-333.

Larsson, K.H., Larsson, E. and Koljalg, U. (2004). High phylogenetic diversity among corticioid homobasidiomycetes. Mycological Research, 108, 983-1002.

Lindahl, B.D., Finlay, R.D. and Cairney, J.W.G. (2005). Enzymatic activities of mycelia in mycorrhizal fungal communities. In: The Fungal Community: Its Organization and Role in the Ecosystem (J. Dighton, J.F. White and P. Oudemans, eds.), 3rd edn., pp. 331-348. CRC Press, Boca Raton, FL, USA.

Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Hogberg, P., Stenlid, J. and Finlay, R. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611-620.

Lindahl, B.D. and Olsson, S. (2004). Fungal translocation: Creating and responding to environmental heterogeneity. Mycologist, 18, 79-88.

Lindahl, B., Stenlid, J. and Finlay, R. (2001). Effects of resource availability on mycelial interactions and 32P-transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiology Ecology, 38, 43-52.

Lindahl, B., Stenlid, J., Olsson, S. and Finlay, R. (1999). Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytologist, 144, 183-193.

McClaugherty, C. and Berg, B. (1987). Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia, 30, 101-112.

Myneni, R.B., Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E., Liski, J., Zhou, L., Alexeyev, V. and Hughes, M.K. (2001). A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Science of the United States of America, 98, 14784-14789.

Myrold, D.D. (1998). Transformations of Nitrogen. In: Principles and Application of Soil Microbiology (D.M. Sylvia, J.J. Fuhrmann, P.G. Hartel and D.A. Zuberer, eds.), pp. 259-294. Prentice-Hall, Inc., London, UK.

Neff, J.C., Townsend, A.R., Gleixner, G., Lehman, S.J., Turbull, J. and Bowman, W.D. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419, 915-917.

O'Brien, H.E., Parrent, J.L., Jackson, J.A., Moncalvo, J.-M. and Vilgalys, R. (2005). Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology, 71, 5544-5550.

Osono, T. (2006). Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Canadian Journal of Microbiology, 52, 701-716.

Osono, T. and Takeda, H. (2002). Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia, 94, 421-427.

Persson, T., Rudbeck, A., Jussy, J.H., Colin-Belgrand, M., Prieme, A., Dambrine, E., Karlsson, P.S. and Sjoberg, R.M. (2000). Soil nitrogen turnover: Mineralisation, nitrification and denitrification in European forest soils. In: Carbon and Nitrogen Cycling in European Forest Ecosystems (E.-D. Schulze, ed.), pp. 297-331. Springer Verlag, Heidelberg.

Rayner, A.D.M. and Boddy, L. (1988). Fungal Decomposition of Wood: Its Biology and Ecology. Wiley, Chichester, UK.

Read, D.J. and Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems: A journey towards relevance? New Phytologist, 157, 475-492.

Rosling, A., Landeweert, R., Lindahl, B.D., Larsson, K.-H., Kuyper, T.W., Taylor, A.F.S. and Finlay, R.D. (2003). Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytologist, 159, 775-783.

Schadt, C.W., Martin, A.P., Lipson, D.A. and Schmidt, S.K. (2003). Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 301, 1359-1361.

Schlesinger, W.H. and Andrews, J.A. (2000). Soil respiration and the global carbon cycle. Biogeochem-istry, 48, 7-20.

Sinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M.P. and Zak, D.R. (2005). Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75, 201-215.

Soderstrom, B.E. and Baath, E. (1978). Soil microfungi in three Swedish coniferous forests. Holarctic Ecology, 1, 62-72.

Steffen, K.T., Hatakka, A. and Hofrichter, M. (2002). Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Applied and Environmental Microbiology, 68, 3442-3448.

Taylor, A.F.S. (2002). Fungal diversity in ectomycorrhizal communities: Sampling effort and species detection. Plant and Soil, 244, 19-28.

Wells, J.M., Harris, M.J. and Boddy, L. (1998). Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina. New Phytologist, 140, 283-293.

White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (M.A. Innis, D.H. Gelfland, J.J. Sninsky and T.J. White, eds.), pp. 315-322. Academic Press, San Diego, CA, USA.

Widden, P. and Parkinson, D. (1973). Fungi from Canadian coniferous forest soils. Canadian Journal of Botany, 51, 2275-2290.

Virzo de Santo, A., Rutigliano, F.A., Berg, B., Fioretto, A., Puppi, G. and Alfani, A. (2002). Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests. Acta Oeco-logica, 23, 247-259.

Vralstad, T., Myhre, E. and Schumacher, T. (2002). Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytologist, 155, 131-148.

0 0

Post a comment