Cognitive Landscape Versus Geographical Landscape

According to the approach that we intend to utilize, the landscape appears at the same time as a geographical entity, an aesthetic surface (Barrett et al. 2009), or a mental representation (Gould and White 1974, Lynch 1976, Gibson 1979, Kaplan and Kaplan 1989, Bourassa 1991, Appleton 1996, Ingold 2000).

Probably every approach in some way makes sense, and the difficulty consists of integrating each perspective into a unitarian paradigm.

The hypothesis that landscape is a semiotic interface between organisms and resources (as a result of the integration of all the species-specific eco-fields) is not in contrast with the other ecological theories but simply introduces a new way to evaluate characters that increase our confidence and knowledge about this complex subject (Farina 2008).

Resources like food, water, refuges, nesting or roosting places, social opportunities, amenity and security, sense of place, social identity are not uniformly distributed and accessible; their scarcity and elusiveness in time and space requires some searching efforts to be located. Searching for resources is not a behavior randomly performed by organisms but it is guided by cognitive processes that use mental maps (search images) and trained behavior in order to optimize the efforts made by a memorization process (Sutherland and Gass 1995, Etzenhouser et al. 1998, Griffiths and Clayton 2001, Chittka and Thompson 2001).

Sign theory integrated into the eco-field hypothesis contributes to increasing the comprehension of the mechanisms by which species interact with the surroundings, tracking resources and adapting to the specific ecological niche (see Odling-Smee et al. 2003). This theoretical body explains the mechanisms by which a physiological (e.g. hunger, thirst) or a psychological (e.g. safety, happiness, spirituality) necessity is satisfied through the transformation of a perceived signal into a sign vehicle, and finally into a specific meaning.

In a continuous switch (on/off and vice versa) of functions, that are related to the physiological bodily constraint, we expect a continuum of sign processes that fires like an extended brain from the surroundings that could depend either on the internal status of organisms or on the availability of resources located in unknown surroundings.

The integration of the sign theory into the eco-field hypothesis, using vital functions as "trait d'union" (the interpretant), allows a new representation of the landscape that becomes a cognitive entity composed of abiotic and biotic components afforded (sensu, Gibson 1979) differently according to the interacting species and the related functions (Fig. 8.20).

Finally, a common theoretical framework around the landscape as a functional entity, a biotext (sensu, Kull 2002), would have a positive impact on the development of an interdisciplinary coalescence in the field of conservation, resource management, and planning. The theory of the cognitive landscape as a semiotic interface between resources and organisms can be accepted by geographers, ecologists, landscape architects, anthropologists and environmental psychologists, planners a b a b

Fig. 8.20 This is an experimental foraging site for the European robin (Erithacus rubecula). Food (millet, sunflower, and mealworms) is provided by the human observer and the white panel plus the container are considered a neutral context in which food is served. Moreover the stopwatch placed at the center of the foraging place has no apparent influence on the foraging behavior. The robin observed by a video camera (Wing Scape Bird Cam), does not show embarrassment (a) and it uses the stopwatch glass (b) as a platform to capture the offered food

Fig. 8.20 This is an experimental foraging site for the European robin (Erithacus rubecula). Food (millet, sunflower, and mealworms) is provided by the human observer and the white panel plus the container are considered a neutral context in which food is served. Moreover the stopwatch placed at the center of the foraging place has no apparent influence on the foraging behavior. The robin observed by a video camera (Wing Scape Bird Cam), does not show embarrassment (a) and it uses the stopwatch glass (b) as a platform to capture the offered food and decision makers. Simulations based on the performance of distinct functions necessary for humans and nonhuman organisms to have access to resources and consequently to establish, expand, or maintain populations are today possible using this theoretical body. Specifically, overlap, conflict, or synergic effects of environmental policies and applications could be tested accordingly, thus avoiding useless discussions about nature, the spatial and temporal delimitation of the landscape, or the inclusion or the exclusion of mental processes in the landscape domain.

0 0

Post a comment