The Emergent Properties Based Landscape EPBL

When individuals (plants, animals, viruses, or bacteria) aggregate they share common resources and behave differently. A forest, for a flock of birds, assumes a different asset and becomes a system. The behavior of such systems is the object of the science of complexity, and the emergent properties are the basis of the systemic approach. Although it is easy to demonstrate the presence of such properties in a system, it is not clear how and when these properties appear and act. Populations, communities and, more generally, ecosystems have emergent properties, such as stability, resilience, fragility, diversity, etc. that can be empirically evaluated (Muller 1997). The most difficult task is to define such emergent properties that appear only when many entities are in contact with each other (Morowitz 2002).

All these properties are the result of interactions between collections of individuals. If we try to find the geography of such properties, we discover that it is possible to find a gradient in such properties across a space.

Again our goal is to delimit the space in which the emergent characteristics act. While for an individual cognition represents the way to link the internal environment with the external world, the emergent properties are not driven by cognitive processes, but are the result of several inter-individual relationships. Every time we address emergent characteristics, we find it difficult to describe in practice properties like resilience, resistance, and diversity.

Assuming that a population or a community has a spatial distribution, their emergent properties could show such a distribution in terms of a score. The idea that, for instance, resilience is not emerging in a homogeneous way within a community, but that it is heterogeneous, opens the road to novel possibilities in understanding the complexity of the systems.

The central place model assumes an increase in environmental hostility moving from the center to the periphery of the focal entity. At the border of the entity there is a decrease in suitability and an increase in environmental constraints (Fig. 8.11).

If we assume that resilience pertains to a specific domain (resilience domain) and that this domain occupies a space, we could figure out a landscape composed

Fig. 8.11 Representation of geography of stability in a hypothetical forest. a is the area with highest stability that decreases moving from b to c

of physical units represented by distinct scores for each emergent property. This idea is very simple but describes the geography of such properties in an efficient way. If properties are not concepts but comprise a functional status of a system, this functional status is not homogeneous because it is not anchored to a homogeneous background.

Moving from individuals to higher order entities, cognition is expressed in terms of areas sensible to energy modification so that different "geographical" parts of a population, community, or landscape play a different role.

For instance, in a flock of birds the individuals that are at the margin are more exposed to predation by hawks, and, considering the probability for all the individuals of a flock to be preyed upon, it is possible to measure this expectation for every individual assuming that every bird maintains its position in the space. If I now express this probability as a risk of predation surface, I can localize individuals that in the flock space are more susceptible to predation. In Fig. 8.121 have arranged a very simple model of predation based on GIS technology. Individuals that share the center of the flock have a lower risk of predation. This property - it must be clear - is not connected with environmental characters but with the internal organization of the flock. Finally, the eco-field of emergent properties is a special case of IBCL in which properties spring from inter-individual interactions. If, for instance, I eliminate all individuals except one, the predation risk will be completely modified and will no longer be dependent on the position of the individual in the flock because the flock has ceased to exist. When we move from the individual to aggregation of individuals, the interactions are per se elements of organization, and their position makes a difference. Mapping the distribution of emergent properties makes it possible to adopt specific indicators.

Just as for the individual eco-field, all the eco-fields of emergent properties create the Emergent-Properties Based Landscape (EPBL).

This model appears extremely useful in application, considering that to survive, a system must have the highest (absolute) scores for properties like resilience, resistance, novelty, and stability (see Fig. 8.13).

Emergent Properties

Fig. 8.12 Inside a flock of birds we can distinguish individuals with higher risk of prédation (at the border) and safer individuals in the center. This can be expressed as a risk-predation surface

higher lower higher higher lower higher

Fig. 8.12 Inside a flock of birds we can distinguish individuals with higher risk of prédation (at the border) and safer individuals in the center. This can be expressed as a risk-predation surface

Fig. 8.13 According to the eco-field paradigm we can expect different ecofields operating into the entity (e.g. forest), in this case from the exterior to the interior: "novelty", "resilient" and "stability" eco-field. In case a the perturbation (clearing) should have secondary effect on the "novelty eco-field" already sensible to changes and environmental constraints. In case b the perturbation (clearing) is incorporated by the "resilient eco-field". In case c all the three ecofields are involved producing disruptive effects on the described entity

Fig. 8.13 According to the eco-field paradigm we can expect different ecofields operating into the entity (e.g. forest), in this case from the exterior to the interior: "novelty", "resilient" and "stability" eco-field. In case a the perturbation (clearing) should have secondary effect on the "novelty eco-field" already sensible to changes and environmental constraints. In case b the perturbation (clearing) is incorporated by the "resilient eco-field". In case c all the three ecofields are involved producing disruptive effects on the described entity

Every property has a geographic distribution according to a gradient, but if we consider (for simplicity) the highest score for each emergent property and the spatial distribution of this property, we could build a mosaic-like surface map that is the emergent properties-based landscape. Some properties can have coincident high scores with other properties, and to localize such areas could be strategic for conserving species and their aggregations.

The differences observed within an entity like a forest or a lichen community are the results of different eco-fields that manipulate energy. The genetic constraint that dominates at the individual level is less evident due to dilution that occurs when a group of such a population, community, or landscape is considered. In such a way we can describe a specific eco-field, such as a "stability eco-field," characterized by an area in which predictability, repetition of patterns, genetic reconnaissance, and coalescence are shaping characters. And in the same way a "novelty eco-field" is active at the periphery, where instability, unpredictability, appearance of new patterns, and genetic diversity are the shaping characters.

The eco-field paradigm is able to link different emergent functions to the geographical space and to provide evidence for the existence of a spatial optimum for every emergent property.

For instance, if a forest is an autopoietic entity, it must have the capacity to create its limits, and thus the ecotones correspond to the limits of such self-organized entities (sensu Jorgensen et al. 1998, Zeleny 1996).

The landscape may be defined not merely as a fixed collection of spatially arranged structures (their total integrated overlap is the "matrix") shared by all species but as a dynamic species-specific and function-related mosaic. This means that each species, according to an active function, may shift within the same landscape, from one eco-field to another and perceive new structures and processes.

The position of a species in the landscape plays a key-role in the evolution of its genetic stock. For instance, at the borders of a landscape (ecotones) the species is exposed to turbulence that may negatively influence some eco-field processes. On the other end, novelties occur at the borders, and novelties are ecologically and biologically important to assure opportunities for the autopoietic mechanisms (Maturana and Varela 1980). The borders appear as places of friction and tension, but they are not the only place of sudden changes in energy levels. In a dynamic similar to the geophysics of tectonic plates, the main constraints occur at the borders of the plates, but fault lines also exist far from the borders where an excess of energy stock appears due to the global set of interactions in the Earth's crust.

The position of a species in the landscape is responsible for the differentiation inside a population that may produce both genetic differentiation into subpopulations inside a community, as well as different coalescence level. The landscape represents the ensemble of all eco-fields of each species, which is the result of bio-semiotic processes. The perception of the landscape is de facto the merging perception of the component eco-fields.

0 0

Post a comment