Why Do Values Matter

We often ask why we should care if one species is lost out of many in an ecosystem. One answer is that natural communities are finely tuned systems in which each species has a role to play. Removing one species may have immediate consequences, or we may not see the effects until decades or centuries later. For example, kelp "forests" (composed of a brown seaweed of the Family Laminariales), found in shallow, rocky habitats from temperate to subarctic regions, are important ecosystems for many commercially valuable fish and invertebrates. In the northern Pacific, prior to hunting by humans, these communities encompassed vast forests of kelp and other marine plants. The kelp was eaten by herbivores such as sea urchins (Family Strongylocentrotidae), which in turn were preyed upon by predators such as otters (Enhydra lutris). Hunting during the eighteenth and nineteenth centuries brought sea otters to the brink of extinction. In the absence of sea otters, sea urchin populations burgeoned. Sea urchins grazed down the kelp forests, at the extreme resulting in "urchin barrens," in which the kelp was completely eradicated. Other species dependent upon kelp (such as abalone Haliotis spp.) were affected, too. Legal protection of sea otters in the twentieth century led to partial recovery of the system. Unfortunately, however, sea otter populations in Alaska seem more recently to be threatened by increased predation from killer whales (Orcinus orca). It appears that whales may have shifted their diet to sea otters when populations of their preferred prey, seals and sea lions, declined. The exact reason for the decline in the seal and sea lion populations is still unclear, but it seems to be the result of declines in their prey, in combination with increased fishing and higher ocean temperatures. As a result of the loss of sea otters, increased sea urchin populations are grazing down kelp beds again.

Interestingly, a similar scenario in kelp forests in southern California did not show immediate effects after the disappearance of sea otters. That is because the system was initially more diverse. Other predators (California sheephead fish, Semicossyphus pulcher, and spiny lobsters, Panulirus interruptus) and competitors (abalone) of the sea urchin helped maintain the system. However, when those predators and competitors were overharvested as well in the 1950s, the kelp forests declined drastically as sea urchin populations boomed. In the 1970s and 1980s, a sea urchin fishery developed that then enabled the kelp forest to recover. However, it left a system with little diversity. The interrelationships among these species and the changes that reverberate through systems as species are removed are mirrored in other ecosystems on the planet, both aquatic and terrestrial.

As this example illustrates, biodiversity is incredibly complex; successful and comprehensive conservation efforts cannot focus on just one species, or even on events of the recent past. Yet we cannot possibly design conservation strategies that take into account all species and their interconnections—we just do not have the resources or the knowledge to do so. Thus we make choices when we measure biodiversity or set conservation priorities. These choices depend upon what we currently hold as valuable. What we value today will influence the scope of the natural world for future generations, as laws, policies, and conservation decisions are based on our current value system.

The issue of what elements of biodiversity are most valuable arises at different scales, from individual to global. For instance, conservation biologists often have to decide in which countries a nongovernmental organization should invest its resources. Within a country or region one has to decide which areas should receive conservation attention, and which to include within a protected area system. Globally, nationally, and regionally, we need to decide which species or populations to study, monitor, and manage. In deciding where to place our resources, we face questions such as these: Should we value areas with greater numbers of species over those with many endemic species (those that are found only in

Oi'fj

EAR'

The actions of individuals—decisions about where to live, what to buy, what to do on and with our land, and how to vote—will have profound effects on the future of biodiversity. (Todd Gipstein/Corbis)

that one place in the world)? Would it be better to value the conservation of phylogenetic diversity (species that are maximally different from an evolutionary standpoint) over the degree of threat to a species? Would it be better to plan for greater security for one type of ecosystem in case of catastrophic events by conserving two or more representatives of that ecosystem, or to have a greater representation of more types of ecosystems? Should we give priority to a species or ecosystem that is nationally endangered but globally common or to one that is nationally common and globally rare? There are no correct answers to these questions—the responses depend upon what the decision-makers value most at the moment they are making the decision.

The responses also depend on the infor mation available for making decisions. Scientists working with the National Centre for Ecological Analysis and Synthesis in the United States have recently raised the question of whether there might also be an inadvertent scientific bias toward "cute, unique, or spectacular" species. In most countries, conservation efforts focus on the species listed as endangered and threatened, although those lists to date include mainly vertebrates and vascular plants. Since we know so little about other components of biodiversity (invertebrates, nonvascular plants, microbes, and so forth), our current endangered species lists may be omitting information critical to better decision making.

Ordinary citizens are involved in similar biodiversity-related decision-making on the local scale as well. Communities across the globe make decisions about whether and how to protect natural lands and their biodiversity. Should a village sell the timber from its forested lands, or should it preserve the forest for its nontimber products (such as fruit and nuts, animal products, medicinal plants, and shade)? Should a municipality permit development or protect open space?

Some feel that governments and corporations have more influence than individuals over local and global biodiversity. However, governments and corporations are organized and run by individuals. In democratic societies, at least, individuals have the responsibility to understand the ramifications of their choices on biodiversity, along with the responsibility to participate in local decision-making. The actions of individuals, whether acting alone or in concert with others, will have the most profound effects on the future of biodiversity.

Some of the most critical priority setting is done every day by individuals in their own lives—decisions about where to live, what to buy, what to do on and with their land, or even how to vote. Yet polls show that while 70 percent of U.S. citizens are concerned about the environment, exit polls record that only 28 to 29 percent of voters actually consider the environment when voting (Dowrie and Shabecoff, 2001/2002).

Few individuals truly realize the impact of their daily decisions. In the book Stuff, the Secret Life of Everyday Things, authors John Ryan and Alan Durning trace all of the environmental costs involved in drinking a cup of coffee. The decision whether to drink coffee at all; which brand to purchase; and how that coffee was grown, harvested, shipped, distributed, packaged, and prepared—all come under consideration. Because many of the steps in coffee production occur elsewhere in the world, there are global ramifications to the simple decision to drink a cup of coffee.

Ultimately, each of the decisions people make, consciously or not, is based upon what they as individuals value, and those are the values that will be learned by their children. As Mark Sagoff (1988) writes: "If individuals in the future have no exposure to anything we consider natural or unspoiled, they will not acquire a taste for such things. What they want will be more or less what we leave to them."

However, it is not merely a question of what we want. We must never forget that biodiversity is vital to human survival. It is essential for the future of life on the planet that we realize this value.

—Melina Laverty, Eleanor Sterling, and Elizabeth Johnson

Bibliography

Beattie, Andrew, and Paul R. Ehrlich. 2001. WOd Solutions: How Biodiversity Is Money in the Bank. New Haven: Yale University Press; Benyus, Janine. 1997. Biomimicry: Innovation Inspired by Nature. New York: William Morrow; Buchmann, Stephen L., and Gary Paul Nabhan. 1995. The Forgotten Pollinators. Washington, DC: Island; Burnett, John. 1999. "Biodiversity, Agricultural Productivity, and People." In The Living Planet in Crisis: Biodiversity Science and Policy, edited by J. Cracraft and F. T. Grifo, pp. 173-196. New York: Columbia University Press; Chevalier, Joan, et al. 1997. Biodiversity, Science and the Human Prospect. New York: Center for Biodiversity and Conservation, American Museum of Natural History; Costanza, Robert, Herman Daly, and Joy Bartholomew. 1991. "Goals, Agenda and Policy Recommendations for Ecological Economics." In Ecological Economics, edited by Costanza, pp. 1-20. New York: Columbia University Press; Costanza, Robert, et al. 1997. "The Value of the World's Ecosystem Services and Natural Capital." Nature 387: 253-260; Dowie, Mark, and Philip Shabecoff. 2001/2002. "Organizing for the Future: An Interview with Mark Dowie and Philip Shabecoff." Orion Afield 6:1; Grifo, Francesca, et al. 1997. "The Origins of Prescription Drugs." In Biodiversity and Human Health, edited by F. Grifo and J. Rosenthal, pp. 131-163. Washington, DC: Island; Hoffmann, William A., and Robert B. Jackson. 2000. "Vegetation-climate Feedbacks in the Conversion of Tropical Savanna to Grassland." Journal of Climate 13: 1593-1602; Kellert, Stephen R. 1996. The Value of Life: Biological Diversity and Human Society. Washington, DC: Island; Laurance, W. F., and G. B. Williamson. 2001. "Positive Feedbacks among Forest Fragmentation, Drought, and Climate Change in the Amazon." Conservation Biology 15, no. 6: 1529-1535; Lorbiecki, Marybeth. 1996. Aldo Leopold, A Fierce Green Fire. Helena, MT: Falcon; Manion, Michele M., Rebecca A. West, and Robert E. Unsworth. 2000. Economic Assessment of the Atlantic Coast Horseshoe Crab Fishery. Arlington, VA: Division of Economics, USFWS; Meffe, Gary K., and C. Ronald Carroll. 1997. Principles of Conservation Biology, 2d ed. Sunderland, MA: Sinauer Associates; Moran, Dominic, and David Pearce. 1997. "The Economic Consequences of Biodiversity Loss." In The Living Planet in Crisis, edited by Joel Cracraft and Francesca Grifo, pp. 217-230. New York: Columbia University Press; Naess, Arne. 1989. Ecology, Community, and Lifestyle: Outline of an Ecosophy. Cambridge: Cambridge University Press; Oerke, E. C., et al. 1994. Crop Production and Crop Protection. Amsterdam: Elsevier; Peterson, Charles H., and Jane Lubchenco. 1997. "Marine Ecosystem Services." In

Nature's Services: Societal Dependence on Natural Ecosystems, edited by Gretchen Daily, pp. 177-194. Washington DC: Island; Pimentel, David, and L. Levitan. 1986. "Pesticides: Amounts Applied and Amounts Reaching Pests." Bioscience 36: 86-91; Pri-mack, Richard B. 1998. Essentials of Conservation Biology, 2d ed. Sunderland, MA: Sinauer Associates; Sagoff, Mark. 1988. The Economy of the Earth. New York: Cambridge University Press; Schopf, J. William, ed. 1983. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton: Princeton University Press; Soule, Michael E. 1985. "What Is Conservation Biology?" Bioscience 35: 727-734; Turner, R. E., and N. N. Rabalais. 1994. "Coastal Eutrophication near the Mississippi River Delta." Nature 368: 619-621; Van DeVeer, Donald, and Christine Pierce. 1998. The Environmental Ethics and Policy Book. 2d ed. New York: Wadsworth; Van Katwijk, M. M., et al. 1993. "Sabaki River Sediment Load and Coral Stress: Correlation between Sediments and Condition of the Malindi-Watamu Reefs in Kenya (Indian Ocean)." Marine Biology 117: 675-683; Vietmeyer, Noel. 1996. "New Crops: Solutions for Global Problems." In Progress in New Crops, edited by J. Janik, pp. 2-8. Alexandria, VA: ASHS.

Worm Farming

Worm Farming

Do You Want To Learn More About Green Living That Can Save You Money? Discover How To Create A Worm Farm From Scratch! Recycling has caught on with a more people as the years go by. Well, now theres another way to recycle that may seem unconventional at first, but it can save you money down the road.

Get My Free Ebook


Post a comment