1. Ackleh, A. S. and Ito, K. (to appear). Measure-valued solutions for a hierarchically size-structured population SIAM J. Appl. Math.

2. Calsina, À. and Saldana, J. (1997). Asymptotic behaviour of a model of hierarchically structured population dynamics, J. Math. Biol. 35:967-987.

3. Clément, P., Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thie-me, H.R. (1989). Perturbation theory for dual semigroups III. Nonlinear Lip-schitz continuous perturbations in the sun reflexive case. In Volterra integro-differential equations in Banach spaces and applications, Trento 1987, G. Da Prato and M. Iannelli (Eds.), Pitman research Notes in Mathematics Series, 190, pp. 67-89.

4. Cushing, J.M. (1998). An introduction to structured population dynamics, CBMS-NSF Regional conference series in applied mathematics 71, SIAM, Philadelphia.

5. Desch and Schappacher (1986). Linearized stability for nonlinear semigroups. In Differential Equations in Banach Spaces (A. Favini and E. Obrecht, Eds.) Spinger Lecture Notes in Mathematics 1223, pp. 61-73.

6. Diekmann, O. and Getto, Ph. (to appear). Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, Journal of Differential Equations.

7. Diekmann, O., Gyllenberg, M., Metz, J.A.J., and Thieme, H.R. (1998). On the formulation and analysis of general deterministic structured population models: I Linear theory. Journal of Mathematical Biology 36: 349-388.

8. Diekmann,O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A.J. and Thieme, H.R. (2001). On the Formulation and Analysis of General Deterministic Structured Population Models. II. Nonlinear Theory. Journal of Mathematical Biology 43: 157-189.

9. Diekmann, O., Gyllenberg, M. and Metz, J.A.J. (2003). Steady-state analysis of structured population models, Theoretical Population Biology 63: 309-338.

10. Getto, Ph., Diekmann, O. and de Roos A.M. (submitted). On the (dis)advan-tages of cannibalism, submitted to Journal of Mathematical Biology.

11. Kooijman, S.A.L.M. (2000). Dynamic Energy and Mass Budgets in Biological Systems, Cambridge University Press, Cambridge.

12. Kirkilionis, M. and Saldana, J. (in preparation). A height-structured forest model.

13. Kirkilionis, M., Diekmann, O., Lisser, B., Nool, M., de Roos, A.M., and Som-meijer, B. (2001). Numerical continuation of equilibria of physiologically structured population models. I. Theory. Mathematical Models and Methods in Applied Sciences 11: 1101-1127.

14. Kirkilionis et al. (2001).

15. Metz, J.A.J. and Diekmann, O. (1986). The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer, Berlin.

16. Persson, L., Byström, P., and Wahlström, E. (2000). Cannibalism and competition in Eurasian perch: Population dynamics of an ontogenetic omnivore, Ecology 81: 1058-1071.

17. Persson, L., De Roos, A.M., Claessen, D., Byström, P., Lövgren, J., Sjögren, S., Svanbäck, R., Wahlström, E., and Westman, E. (2003). Gigantic cannibals driving a whole-lake trophic cascade, PNAS 100: 4035-4039

18. Prüß, J. (1983). Stability analysis for equilibria in age-specific population dynamics, Nonl. Anal. TMA 7: 1291-1313.

19. de Roos, A.M., Person, L. and Thieme, H.R. (2003). Emergent Allee effects in top predators feeding on structured prey populations, Proc. R. Soc. Lond. B 270: 611-618.

20. de Roos, A.M. and Persson, L. (2001). Physiologically structured models -from versatile technique to ecological theory, Oikos 94: 51-71.

21. de Roos, A.M. and Persson, L. (2002). Size-dependent life-history traits promote catastrophic collapses of top predators, Proc. Natl. Acad. Sci. USA 99: 12907-12912

22. de Roos, A.M., Persson, L. and McCauley, E. (2003). The influence of size-dependent life history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6: 473-487.

23. Scheffer, M., Carpenter, S.R. , Foley, J.A., Folke, C. and Walker, B. (2001). Catastrophic shifts in ecosystems, Nature 413: 591-596.

24. Tucker and Zimmermann (1988). A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math. 48: 549-591.

25. Webb, G.F. (1985) Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York.

Was this article helpful?

0 0

Post a comment