For Regression Trees

For regression trees, two common impurity measures are:

Least squares. This method is similar to minimizing least squares in a linear model. Splits are chosen to minimize the sum of squared error between the observation and the mean in each node.

N=1544 Present: 21% Absent: 79%

Classify as Absent Is ELEV < 2954 m ?

Yes No

Yes No

Is ELEV < 2444 m ? Classify as Absent Yes No

Classify as Present Classify as Absent

Figure 1 A simple example of a classification tree describing the relationship between presence/absence of P. menziesii and explanatory factors of elevation (ELEV) and aspect (ASP) in the mountains of northern Utah. Thin-lined boxes indicate a node from which a split emerges. Thick-lined boxes indicate a terminal node.

Classify as Present Classify as Absent

Figure 1 A simple example of a classification tree describing the relationship between presence/absence of P. menziesii and explanatory factors of elevation (ELEV) and aspect (ASP) in the mountains of northern Utah. Thin-lined boxes indicate a node from which a split emerges. Thick-lined boxes indicate a terminal node.

Least absolute deviations. This method minimizes the mean absolute deviation from the median within a node. The advantage of this over least squares is that it is not as sensitive to outliers and provides a more robust model. The disadvantage is in insensitivity when dealing with data sets containing a large proportion of zeros.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment