Introduction

Nitrification is an essential process in the nitrogen cycle of soils, natural waters, and wastewater treatment systems. It is responsible for the biological conversion of ammonium to nitrate. While both of these compounds are suitable for plant use as nutrients, they behave quite differently in soil systems, and have quite different sources and fates in the marine environment. Ammonium is produced as a waste product from cellular and organismal metabolism, a breakdown product of organic material. It is the preferred nitrogen source for many plants and algae. Nitrate is not only a nutrient, but the substrate for the bacterial process of denitrification, by which nitrate is reduced to dinitrogen gas, N2. Most plants cannot use dinitrogen gas as a nitrogen source, so denitrification represents a loss term for fixed nitrogen in the ecosystem. Nitrification itself does not directly affect the nitrogen budget, but by linking organic matter decomposition to denitrification, it completes the N cycle.

The significance of nitrification can be summarized in the following list, and the individual items are described in the sections below: (1) transformation of ammonium to nitrate, with implications for the availability of N, and the supply of substrate for denitrification, (2) production of nitrous oxide in aquatic and terrestrial ecosystems, (3) autotrophic fixation of CO2, (4) consumption of oxygen in sediments, (5) acidification of the environment.

Was this article helpful?

0 0
Oplan Termites

Oplan Termites

You Might Start Missing Your Termites After Kickin'em Out. After All, They Have Been Your Roommates For Quite A While. Enraged With How The Termites Have Eaten Up Your Antique Furniture? Can't Wait To Have Them Exterminated Completely From The Face Of The Earth? Fret Not. We Will Tell You How To Get Rid Of Them From Your House At Least. If Not From The Face The Earth.

Get My Free Ebook


Post a comment