PCA is one of a wide range of ordination methods available to ecologists. It is extremely useful as a hypothesis-generating tool, summarizing patterns in multivariate data, and reducing numbers of variables in analyses. It is best suited to data sets in which dependent variables are linearly related to each other, but may still provide useful results even if this condition is not fully met. Considerable control over the properties of the analysis can be exerted by use of data transformation and standardization, and it is important to be aware of the effects of these data manipulations on analysis interpretation. In general, raw data analyses will be influenced by variables with large values, whereas more extreme transformations or standardization will result in analyses in which variables with smaller values will exert stronger effects. PCA also has a range of other uses in multiple regression, and can provide summary variables that can be input into other analyses. It should not be blindly applied to data without consideration of data transformation and standardization, biplot scaling, and underlying relationships between variables. As with most ecological analyses, decisions made by the ecologist can alter the results and interpretation of numerical analysis; so it is important to ensure that correct decisions are made during the calculation of PCA.

See also: Ordination.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment