Acknowledgments

Discussions with Marcelo Montemurro and Chema Ruiz are gratefully acknowledged. SCM benefits from a Ramon y Cajal contract of MEC (Spain).

References

2. D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Self-organization and Disorder: Concepts and Tools (Springer, Berlin, 2000).

3. S. C. Manrubia and D. H. Zanette, Phys. Rev. E 59, 4945 (1999).

4. G. K. Zipf, Human Behaviour and the Principle of Least-Effort (Addison-Wesley, Cambridge, 1949).

5. G. K. Zipf, The Psycho-Biology of Language (Houghton-Mifflin, Boston, 1935).

8. F. H. van Eemeren, Crucial Concepts in Argumentation Theory (University of Chicago Press, Chicago, 2001).

9. C. M. Brown and P. Hagoort, The Neurocognition of Language (Oxford University Press, Oxford, 2000).

10. B. B. Mandelbrot, in Communication Theory, Ed. W. Jackson (Butterworth, London, 1953), p. 486.

11. B. B. Mandelbrot, Inform,. Control 2, 90 (1959); 4, 198 (1961); 4, 300 (1961).

12. H. A. Simon, Inform. Control 3, 80 (1960); 4, 217 (1961); 4, 305 (1961).

13. W. Li, IEEE Trans. Inf. Theory 38, 1842 (1992).

14. M. A. Montemurro and D. H. Zanette, Glottometrics 4, 86 (2002).

15. D. H. Zanette and M. A. Montemurro, J. Quant. Linguistics 12, 29 (2005).

17. M. G. Boroda and A. A. Polikarpov, Musikometrika 1, 127 (1988).

18. B. Manaris, D. Vaughan, C. Wagner, J. Romero, and R. B. Davis, in Lecture Notes in Computer Science: Applications of Evolutionary Computing, Eds. F. Rothlauf et al. (Springer, Berlin, 2003), p. 522.

20. J. Portugali, Self-Organization and the City (Springer, Berlin, 2000).

21. M. Ruhlen, A Guide to the World's Languages (Stanford University Press, Stanford, 1991).

22. M.A.F. Gomes, G.L. Vasconcelos, I.J. Tsang, and I.R. Tsang, Physica A 271, 489 (1999).

23. D.M. Abrams and S.H. Strogatz, Nature 424, 900 (2003).

24. H. W. Watson and F. Galton, J. Roy. Anthropol. Inst. 4, 138 (1874).

25. R. A. Fisher, Proc. Roy. Soc. Edin. 42, 321 (1922).

26. B. Sykes and C. Irven, Am. J. Hum. Genet. 66, 1417 (2000).

27. T. E. Harris, The theory of branching processes. (Springer-Verlag, Berlin, 1963).

28. N. Yasuda, L. L. Cavalli-Sforza, M. Skolnick, and M. Moroni, Theor. Pop. Biol. 5, 123 (1974).

29. M. Kimura and J. F. Crow, Genetics 49, 725 (1964).

30. M. Kimura and T. Ohta, Theoretical Aspects of Population Genetics. (Princeton University Press, 1971).

31. S. E. Colantonio, G. W. Lasker, B. A. Kaplan, and V. Fuster, Hum. Biol. 75, 785 (2004).

32. Y. D. Yuan, C. Zhang, Q. Y. Ma, and H. M. Yang, Yi Chuan Xue Bao 27, 471 (2000).

33. L. Jin, B. Su, J. Xiao, et al., Am. J. Hum. Gen. 65, 1136 (1999).

34. S. C. Manrubia, B. Derrida, and D. H. Zanette, Am. Sci. 91, 158 (2003).

35. http://www.newulmtel.net/~jatakuck/lower/AckDoc1.html

36. S. Miyazima, Y. Lee, T. Nagamine, and H. Miyajima, Physica A 278, 282 (2000).

37. S. C. Manrubia and D. H. Zanette, J. theor. Biol. 216, 461 (2002).

38. D. M. Hull, Theor. Popul. Biol. 54, 105 (1998).

39. D. H. Zanette and S. C. Manrubia, Physica A 295, 1 (2001).

40. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1970).

41. D. L. Bartley, T. Ogden, and R. Song, BioSystems 66, 179 (2002).

42. P. A. P. Moran, The Statistical Processes of Evolutionary Theory. (Clarendon Press, Oxford, 1962).

43. M. W. Hahn and R. A. Bentley, Proc. Roy. Soc. London B 270, S120 (2003).

44. R. Mace and C. J. Holden, Trends Ecol. Evol. 20, 116 (2005).

Chapter 7 Criticality in epidemiology

Nico Stollenwerk

Universidade do Porto, Faculdade de Ciencias, Departamento de Matematica Pura,Rua do Campo Alegre, 687, 4169-007 Porto, Portugal and

Gulbenkian Institute of Science, Apartado 14, Edificio Amerigo Vespucci, 2781-901 Oeiras, Portugal [email protected]

Vincent A.A. Jansen School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

For a long time criticality has been considered in epidemiological models. We review the body of theory developed over the last twenty five years for the simplest models. It is at first glance difficult to imagine that an epidemiological system operates at a very fine tuned critical state as opposed to any other parameter region. However, the advent of self-organized criticality has given hints in how to interpret large fluctuations observed in many natural systems including epidemiological systems. We show some scenarios where criticality has been observed (e.g., measles under vaccination) and where evolution towards a critical state can explain fluctuations (e.g., meningococcal disease.)

Was this article helpful?

0 0

Post a comment