Explanation description prediction and control

At all levels of ecological organization we can try to do a number of different things. In the first place we can try to explain or understand. This is a search for knowledge in the pure scientific tradition. In order to do this, however, it is necessary first to describe. This, too, adds to our knowledge of the living world. Obviously, in order to understand something, we must first have a description of whatever it is that we wish to understand. Equally, but less obviously, the most valuable descriptions are those carried out with a particular problem or 'need for understanding' in mind. All descriptions are selective: but undirected description, carried out for its own sake, is often found afterwards to have selected the wrong things.

Ecologists also often try to predict what will happen to an organism, a population, a community or an ecosystem under a particular set of circumstances: and on the basis of these predictions we try to control the situation. We try to minimize the effects of locust plagues by predicting when they are likely to occur and taking appropriate action. We try to protect crops by predicting when conditions will be favorable to the crop and unfavorable to its enemies. We try to maintain endangered species by predicting the conservation policy that will enable them to persist. We try to conserve biodiversity to maintain ecosystem 'services' such as the protection of chemical quality of natural waters. Some prediction and control can be carried out without explanation or understanding. But confident predictions, precise predictions and predictions of what will happen in unusual circumstances can be made only when we can explain what is going on. Mathematical modeling has played, and will continue to play, a crucial role in the development of ecology, particularly in our ability to predict outcomes. But it is the real world we are interested in, and the worth of models must always be judged in terms of the light they shed on the working of natural systems.

It is important to realize that there are two different classes of explanation in biology: proximal and ultimate explanations. For example, the present distribution and abundance of a particular species of bird may be 'explained' in terms of the physical environment that the bird tolerates, the food that it eats and the parasites and predators that attack it. This is a proximal explanation. However, we may also ask how this species of bird comes to have these properties that now appear to govern its life. This question has to be answered by an explanation in evolutionary terms. The ultimate explanation of the present distribution and abundance of this bird lies in the ecological experiences of its ancestors. There are many problems in ecology that demand evolutionary, ultimate explanations: 'How have organisms come to possess particular combinations of size, developmental rate, reproductive output and so on?' (Chapter 4), 'What causes predators to adopt particular patterns of foraging behavior?' (Chapter 9) and 'How does it come about that coexisting species are often similar but rarely the same?' (Chapter 19). These problems are as much part of modern ecology as are the prevention of plagues, the protection of crops and the preservation of rare species. Our ability to control and exploit ecosystems cannot fail to be improved by an ability to explain and understand. And in the search for understanding, we must combine both proximal and ultimate explanations.

Lawn Care

Lawn Care

The Secret of A Great Lawn Without Needing a Professional You Can Do It And I Can Show You How! A Great Looking Lawn Doesnt Have To Cost Hundreds Of Dollars Or Require The Use Of A Professional Lawn Care Service. All You Need Is This Incredible Book!

Get My Free Ebook


  • martina grunewald
    How Prediction and control can be carried out without explanation and understanding ?
    2 years ago

Post a comment