References

Ball MC, Canny MJ, Huang CX, Egerton JJG, Wolfe J (2006) Freeze/thaw-induced embolism depends on nadir temperature: the heterogeneous hydration hypothesis. Plant Cell Environ 29:729-745

Beck E (1983) Frost- und Feuerresistenz tropisch-alpiner Pflanzen. Naturwiss Rundsch 36:105109

Beck E (1994a) Cold tolerance in tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 77-110

Beck E (1994b) Turnover and conservation of nutrients in the pachycaul Senecio keniodendron. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 215-221 Beck E, Scheibe R, Senser M, Müller W (1980) Estimation of leaf and stem growth of unbranched

Senecio keniodendron trees. Flora 170:68-76 Beck E, Senser M, Scheibe R, Steiger H-M, Pongratz P (1982) Frost avoidance and freezing tolerance in Afroalpine "giant-rosette" plants. Plant Cell Environ 5:215-222 Beck E, Scheibe R, Senser M (1983) The vegetation of the Shira Plateau and the western slopes of

Kibo (Mt. Kilimanjaro, Tanzania). Phytocoenologia 11:1-30 Beck E, Schulze E-D, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine "giant-rosette" plants. Planta 162:276-282 Carlquist S (1994) Anatomy of tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 111-128

Goldstein G, Nobel PS (1991) Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol 97:954-961 Goldstein G, Nobel PS (1994) Water relations and low-temperature acclimation for cactus species varying in freezing tolerance. Plant Physiol 104:675-681 Hedberg O (1964a) Features of Afroalpine plant ecology. Acta Phytogeogr Suec 49:1-144 Hedberg O (1964b) Etudes écologiques de la flore Afroalpine. Bull Soc R Bot Belg 97:5-18 Jones HG (1992) Plants and microclimates, 2nd edn. Cambridge University Press, Cambridge Keeley JE, Keeley SC (1989) Crassulacean acid metabolism (CAM) in high elevation tropical cactus. Plant Cell Environ 12:331-336 Keeley JE, DeMason DA, Gonzalez R, Markham KR (1994) Sediment-based carbon nutrition in tropical alpine Isoëtes. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function., Cambridge University Press, Cambridge, pp 167-194 Krog JO, Zachariassen KE, Larsen B, Smidsrod O (1979) Thermal buffering in Afroalpine plants due to nucleating agent-induced water freezing. Nature 282:300-301 Lang M, Schindler C (1994) The effect of leaf-hairs on blue and red fluorescence emission and on zeaxanthin cycle performance of Senecio medley L. J Plant Physiol 144:680-685 Lauer W (1975) Vom Wesen der Tropen. Klimaökologische Studien zum Inhalt und zur Abgrenzung eines irdischen Landschaftsgürtels. Akad Wiss Lit Abh Math Naturwiss Kl (Mainz) 1975, 3:5-52

Lipp CC, Goldstein G, Meinzer FC, Niemczura W (1994) Freezing tolerance and avoidance in high-elevation Hawaiian plants. Plant Cell Environ 17:1035-1044 Medina E, Delgado M (1976) Photosynthesis and night CO2-fixation in Echeveria columbiana

Poellnitz. Photosynthetica 10:155-163 Meinzer F, Goldstein G (1985) Some consequences of leaf pubescence in the Andean giant-rosette plant Espeletia timotensis. Ecology 66:512-520 Meinzer FC, Goldstein G, Rundel PW (1994) Comparative water relations of tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 61-76 Melcher PJ, Goldstein G, Meinzer FC, Minyard B, Giambelluca TW, Loope LL (1994) Determinants of thermal balance in the Hawaiian giant rosette plant, Argyroxiphium sandwicense. Oecologia 98:412-418

Miller GA (1994) Functional significance of inflorescence pubescence in tropical alpine species of Puya. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 195-213 Rada F, Goldstein G, Azocar A, Meinzer F (1985) Freezing avoidance in Andean giant rosette plants. Plant Cell Environ 8:501-507 Rehder H (1994) Soil nutrient dynamics in East African alpine ecosystems. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 223-228 Reisigl H, Keller R (1987) Alpenpflanzen im Lebensraum. G Fischer, Stuttgart

Rundel PW (1994) Tropical alpine climates. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 21-44

Rundel PW, Smith AP, Meinzer FC (eds) (1994a) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge

Rundel PW, Meinzer FC, Smith AP (1994b) Tropical alpine ecology: progress and priorities. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 355-363

Schuepp PH (1993) Leaf boundary layers. New Phytol 125:477-507

Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant-rosette plant. Biotropica 6:263-266

Squeo FA, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378-382

Troll C (1943) Die Frostwechselhäufigkeit in den Luft- und Bodenklimaten der Erde. Meteorol Z 60:161-171

Walter H, Breckle S-W (1984) Spezielle Ökologie der tropischen und subtropischen Zonen. G Fischer, Stuttgart

Zhu JJ, Beck E (1991) Water relations of Pachysandra leaves during freezing and thawing. Evidence for a negative pressure potential alleviating freeze-dehydration stress. Plant Physiol 97:1146-1153

Was this article helpful?

0 0
Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook


Post a comment