Cod

This laboratory method requires skill and training similar to that required for the BOD test. The environmental engineer heats a sample to its boiling point with known amounts of sulfuric acid and potassium dichromate. Using a reflux condenser minimizes the loss of water. After 2 hr, the environmental engineer cools the solution and determines the dichromate amount that reacted with the oxi-dizable material in the water sample by titrating the excess potassium dichromate with ferrous sulfate using ferrous 1,10-phenanthraline (ferroin) as the indicator. The environmental engineer calculates the dichromate consumed as to the oxygen equivalent for the sample and reports it as oxygen mg/l of the sample.

Interpretations of COD values are difficult since this method of oxidation is markedly different from the BOD method. Although ultimate BOD values can agree with COD values, a number of factors can prevent this concordance including:

1. Many organic materials are oxidizable by dichromate but not biochemically oxidizable and vice versa. For example, pyridine, benzene, and ammonia are not attacked by the dichromate procedure.

2. A number of inorganic substances such as sulfide, sulfites, thiosulfates, nitrites, and ferrous iron are oxidized by dichromate creating an inorganic COD that is misleading when the organic content of wastewater is estimated. Although the seed acclimation factor gives erroneously low results on BOD tests, COD results do not depend on acclimation.

3. Chlorides interfere with the COD analysis and their effect must be minimized for consistent results. The standard procedure provides for a limited amount of chlorides in the sample. Despite these limitations, the dichromate COD is useful in the control of wastewater effluents containing caustic and chlorine, dyeing and textile effluents, organic and inorganic chemicals, paper, paints, plating, plastics, steel, aluminum, and ammonia.

COD Detector

The COD method usually refers to the laboratory dichromate oxidation procedure. It is also applied to other procedures that differ from the dichromate method but involve chemical reaction. These methods are embodied in instruments both for manual operation in the laboratory and for automatic operation online. They have the advantage of reducing the analysis time from days (5-day BOD) and hours (dichromate and respirometer) to minutes.

Automatic Online Designs

Figure 7.8.13 shows an online analyzer with COD ranges from 0-100 ppm to 0-5000 ppm and adjustable measurement cycle times from 10 min to 5 hr. The sample flow can be continuous at rates to 0.25 gpm (1.0 lpm) and can contain solid particles to 100 /.

The automatic COD analyzer periodically injects a 5-cc sample from the flowing process stream into the reflux chamber, after mixing it with dilution water (if any) and two reagents: dichromate solution and sulfuric acid. The reagents also contain an oxidation catalyst (silver sulfate) and a chemical that complexes chlorides in the solution (mercuric sulfate). The heater boils the mixture at 302°F (150°C), and the cooling water in the reflux condenser recondenses the vapors. The solution is refluxed for a preset time during which the dichromate ions are reduced to trivalent chromic ions as the oxygen-demanding organics are oxidized in the sample.

The chromic ions give the solution a green color. The environmental engineer measures the COD concentration from the amount of dichromate converted to chromic ions by measuring green color intensity through a fiber-optic detector. The microprocessor-controlled package is available with automatic zeroing, calibration, and flushing features.

In one instrument, a 20-/ l water sample is manually injected into a carbon dioxide carrier stream and swept

FIG. 7.8.13 Automatic COD analyzer. This analyzer uses a dichromate reagent and fiber-optic colorimeter detector and provides features of adjustable reflux time and autocalibration. (Courtesy of Ionics Inc.)

through a platinum catalyst combustion furnace. In this furnace, pollutants are oxidized to carbon monoxide and water, and the water is removed from the stream by a drying tube. Then, the reaction products receive a second platinum catalytic treatment. An NDIR detector then measures carbon monoxide concentration. The environmental engineer can convert the readings to COD using a calibration chart. An analysis can be completed in 2 min. This instrument is commercially available for manual operation (see Figure 7.8.14). Data obtained on domestic sewage indicate excellent correlation between this method (frequently called CO2D) and the standard COD method.

0 0

Post a comment