Colorado Springs Treatment Plant

A full, tertiary treatment plant is in operation in Colorado Springs, Colorado. The plant was designed with the objective of producing a high-quality effluent that is acceptable both as irrigation water and makeup water for power station cooling towers. The plant has a dual design. Both systems use the effluent from an existing trickling filter treatment plant.

The plant produces irrigation water by filtering this effluent in four coarse media filters that are hydraulically loaded at a rate of 10 to 20 gpm per sq ft. These filters are effective at removing the gross particulate matter at a rate of 8 mgd before the waste is used as irrigation water.

The system that produces cooling tower makeup water is more extensive, reflecting the more stringent effluent quality requirements (see Figure 7.31.8). The trickling filter effluent first enters a solids-contact clarifier where a slurry of mostly recycled lime coagulates the SS and precipitates the phosphates. The effluent is then neutralized

FIG. 7.31.8 Colorado Springs treatment plant section producing an effluent quality that is acceptable as power plant makeup water.

by CO2 from the lime furnace off-gases, which is supplemented at times by acid. This system then passes the waste through dual media filters to remove the solids remaining after the chemical treatment.

The final stage of treatment is by granular, activated-carbon columns. The columns operate in an upflow configuration and remove residual organic contaminants. The actual water quality of the effluent is BOD, 11 mg/l; COD, 17mg/l; SS, less than 1.5 mg/l; and PO;|~, less than 3.0 mg/l.

Both the lime and the activated-carbon systems have recycling loops that use multiple-hearth furnaces to regenerate some of the chemicals used. The recycled lime was found to be more effective in raising the pH than fresh lime. The recycled lime dosage is 280 mg/l, and the dosage for new lime is 325 mg/l.

The retention time in the contact clarifier is 1.25 hr, and the anthracite coal and sand filters are hydraulically loaded at a rate of 20 gpm per sq ft. Plant operating expenses are reduced from the sale of the effluent as power plant makeup water at a production rate of 2 mgd. The biological sludge in this plant is the first application of the Porteous heat treatment process in the United States.

Was this article helpful?

0 0

Post a comment