An anaerobic lagoon is similar in construction to an aerobic lagoon in levee dimensions and construction materials. The anaerobic lagoon, however, usually requires less surface area than the aerobic facility. Since oxygen transfer from the atmosphere is not important, the anaerobic lagoon can be as deep as is practical. A depth of at least 15 ft is recommended whenever groundwater considerations and area geology permit. The relative depth of an anaerobic lagoon provides improved heat retention. The lagoon should be as long as practical (an efficient length to width ratio is 2:1).

The BOD loading rate in anaerobic lagoon design is 500 to 1000 lb BOD per acre per day with an expected BOD removal efficiency of 50 to 80%. The required detention time is between 30 and 50 days. The ideal pH range for the anaerobic process is 6.6 to 7.6, but lagoon efficiency is not significantly hampered if pH is gradually increases to 9.0. Above pH 9.0, the efficiency drops off rapidly. Sudden bursts of high and low pH also hinder lagoon performance.

Because of the buffering effect provided by liberating carbon dioxide in the anaerobic process, the lagoon can also act as an effective neutralization system. It is capable of neutralizing approximately 0.5 lb of caustic per lb of BOD removed while the lagoon is buffered at a pH of roughly 8.0.

The anaerobic process functions optimally over two temperature ranges: the mesophylic range of 85° to 100°F and the thermophilic range of 120° to 135°F. Only the mesophylic range, however, applies to an unheated lagoon. The lagoon is optimally effective when the temperature range for mesophylic operation is not violated. However, as temperatures decrease below 85°F, the lagoon efficiency decreases only slightly until a temperature of about 60°F is reached, at which point the efficiency drops off rapidly.

This temperature requirement is why the lagoon should be as deep as possible, i.e., to maximize heat retention.

Was this article helpful?

0 0

Post a comment