Combustion, Cl Atmospheric reac- 42

manufactur- tions of NaCl, ing volcanoes

600 ppt1920 1-2 yr19

100-20023 About 0.5 ppb21 About 1 wk

Biogenic processes, photosynthesis, absorption in oceans Stratospheric reactions


Forest destruction and changes in earth's biomass may add 20-30 X 103 Tg CO2/yr to atmosphere18 Photochemical reactions in stratosphere may impact on O3 layer Volcanoes can release 10-20 Tg Cl yr"1 22

Source: Elmer Robinson, (Pullman, Wash.: Washington State University).

1Based on 1978 global fuel usage and estimated sulfur contents.

2Major reference is R.D. Cadle, 1980, Rev. Geophys. Space Phys. 18, 746-752.

3P.J. Maroulis, A.L. Torres, A.B. Goldberg, and A.R. Bandy, 1980, J. Geophys. Res. 85, 7345-7349.

4Includes COS, CS2, (CH3)2S, (CH3)2S2, CH3, and SH.

5Adapted from D.F. Adams, S.O. Farwell, E. Robinson, and M.R. Pack, 1980, Biogenic sulfur emissions in the SURE region. Final report by Washington State University for Electric Power Research Institute, EPRI Report No. EA-1516.

6A.L. Torres, P.J. Maroulis, A.B. Goldberg, and A.R. Bandy, 1980, J. Geophys. Res. 85, 7357-7360.

7P.R. Zimmerman, R.B. Chatfield, J. Fishman, P.J. Crutzen, and P.L. Hanst, 1978, Geophys. Res. Lett. 5, 679-682.

8Based on 1978 global combustion estimates.

10Approximate value combining values given in several references.

11R. Söderlund, and B.H. Svensson, 1976, The global nitrogen cycle, in SCOPE Report 7, Swedish National Science Research Council, Stockholm.

121978 fuel usage figures apply to the following references: R.F. Weiss, and H. Craig, Geophys. Res. Lett. 3, 751-753; and D. Pierotti, and R.A. Rasmussen, 1976, Geophys. Res. Lett. 3, 265-267.

13E. Robinson, and R.C. Robbins, Emissions, concentrations, and fate of gaseous atmospheric pollutants, in Air pollution control, edited by W. Strauss, 1-93, Part 2 of New York: Wiley.

14J.C. Sheppard, H. Westberg, J.F. Hopper, and K. Ganesan, 1982, J. Geophys. Res. 87, 1305-1312.

15L.E. Heidt, J.P. Krasnec, R.A. Lueb, W.H. Pollock, B.E. Henry, and P.J. Crutzen, 1980, J. Geophys. Res. 85, 7329-7336.

16R.E. Graedel, 1979, J. Geophys. Res. 84, 273-286.

17Reference 13 tabulation updated to approximate 1978 emissions.

18G.M. Woodwell, R.H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, and D.B. Botkin, 1978, Science 199, 141-146.

19R.A. Rasmussen, L.E. Rasmussen, M.A.K. Khalil, and R.W. Dalluge, 1980, J. Geophys. Res. 85, 7350-7356.

20E. Robinson, R.A. Rasmussen, J. Krasnec, D. Pierotti, and M. Jakubovic, 1977, Atm. Environ. 11, 213-215.

21J.A. Ryan, and N.R. Mukheijee, 1975, Rev. Geophys. Space Phys. 13, 650-658.

22R.D. Cadle, 1980, Rev. Geophys. Space Phys. 18, 746-752.

23Based on estimated reaction of NaCl to form Cl2.

pended particles. At high humidities, these particles act as condensation nuclei or undergo hydration to become solution droplets. The oxidation then proceeds by absorption of both SO2 and O2 by the liquid aerosols with subsequent chemical reactions in the liquid phase. The oxidation slows considerably when the droplets become highly acidic because of the decreased solubility of SO2. However if sufficient ammonia is present, the oxidation process is not impeded by the accumulation of H2SO4. Measurements of particulate composition in urban air often show large concentrations of ammonium sulfate.

Was this article helpful?

0 0

Post a comment