Meteorology

Clinging to the surface of the earth is a thin mantle of air known as the atmosphere (Figure 5.6.1). Calling the atmosphere thin may be confusing; however, 99% of the atmosphere mass lies within just 30 km (19 mi) of the earth's surface, and 90% of the atmosphere's mass lies within just 15 km (9 mi) of the surface.

FIG. 5.6.1 Classification of atmosphere based on temperature. (This figure is not drawn to scale.)

The atmosphere is often classified in terms of temperature. Starting at the earth's surface and moving upward, temperature generally decreases with increasing altitude. This region, termed the troposphere, is of most interest to meteorologists because it is where weather and air pollution problems occur.

The tropopause is the boundary between the troposphere and the stratosphere. Below the tropopause, atmospheric processes are governed by turbulent mixing of air; but above it, they are not. In the stratosphere, temperature increases with height because of the high ozone concentration. Ozone absorbs radiation from the sun, resulting in an increase in stratospheric temperature.

The meteorological elements that have the most direct and significant effects on the distribution of air pollutants in the atmosphere are wind speed, wind direction, solar radiation, atmospheric stability, and precipitation.

Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook


Post a comment