Sources Effects And Fate Of Pollutants

Air pollution is defined as the presence in the outdoor atmosphere of one or more contaminants (pollutants) in quantities and duration that can injure human, plant, or animal life or property (materials) or which unreasonably interferes with the enjoyment of life or the conduct of business. Examples of traditional contaminants include sulfur dioxide, nitrogen oxides, carbon monoxide, hydrocarbons, volatile organic compounds (VOCs), hydrogen sulfide, particulate matter, smoke, and haze. This list of air pollutants can be subdivided into pollutants that are gases or particulates. Gases, such as sulfur dioxide and nitrogen oxides exhibit diffusion properties and are normally formless fluids that change to the liquid or solid state only by a combined effect of increased pressure and decreased temperature. Particulates represent any dispersed matter, solid or liquid, in which the individual aggregates are larger than single small molecules (about 0.0002 ¡m in diameter) but smaller than about 500 micrometers (¡m). Of recent attention is particulate matter equal to or less than 10 ¡m in size, with this size range of concern relative to potential human health effects. (One ¡m is 10~4 cm).

Currently the focus is on air toxics (or hazardous air pollutants [HAPs]). Air toxics refer to compounds that are present in the atmosphere and exhibit potentially toxic effects not only to humans but also to the overall ecosystem. In the 1990 Clean Air Act Amendments (CAAAs), the air toxics category includes 189 specific chemicals. These chemicals represent typical compounds of concern in the industrial air environment adjusted from workplace standards and associated quality standards to outdoor atmospheric conditions.

The preceding definition includes the quantity or concentration of the contaminant in the atmosphere and its associated duration or time period of occurrence. This concept is important in that pollutants that are present at low concentrations for short time periods can be insignificant in terms of ambient air quality concerns.

Additional air pollutants or atmospheric effects that have become of concern include photochemical smog, acid rain, and global warming. Photochemical smog refers to the formation of oxidizing constituents such as ozone in the atmosphere as a result of the photo-induced reaction of hydrocarbons (or VOCs) and nitrogen oxides. This phenomenon was first recognized in Los Angeles, California, following World War II, and ozone has become a major air pollutant of concern throughout the United States.

Acid rain refers to atmospheric reactions that lead to precipitation which exhibits a pH value less than the normal pH of rainfall (the normal pH is approximately 5.7 when the carbon dioxide equilibrium is considered). Recently, researchers in central Europe, several Scandinavian countries, Canada, and the northeastern United States, have directed their attention to the potential environmental consequences of acid precipitation. Causative agents in acid rain formation are typically associated with sulfur dioxide emissions and nitrogen oxide emissions, along with gaseous hydrogen chloride. From a worldwide perspective, sulfur dioxide emissions are the dominant precursor of acid rain formation.

Another global issue is the influence of air pollution on atmospheric heat balances and associated absorption or reflection of incoming solar radiation. As a result of increasing levels of carbon dioxide and other carbon-containing compounds in the atmosphere, concern is growing that the earth's surface is exhibiting increased temperature levels, and this increase has major implications in shifting climatic conditions throughout the world.

Was this article helpful?

0 0

Post a comment